
Lecture 5

Complex numbers

5.1 Goals

1. Recall how to add and multiply complex numbers

2. Understand that addition of complex numbers is addition of vectors

3. Understand that multiplication by complex numbers is like scaling and
rotating

4. Become proficient with computations using complex numbers

5.2 Review of complex numbers

Recall that mathematicians use the symbol i to denote a square root of -1.
I say “a” square root and not “the” square root because you always expect
two square roots to any non-zero number—and indeed, ≠i is another square
root of -1. We’ll see that this ambiguity is a symmetry later in the course.

Definition 5.2.1. A complex number is a number obtained by adding a real
multiple of i to some real number.

Notation 5.2.2. Thus, any complex number can be written in the form
a + bi where a, b œ R.

The set of all complex numbers is denoted by C, which is the blackboard
bold font of the capital letter C.
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50 LECTURE 5. COMPLEX NUMBERS

Example 5.2.3. The following are all examples of complex numbers:

3, 3 + i, 3 ≠ i, 3 +
Ô

fii, i, fi + ifi, ≠7i.

Note that any real number is a complex number (of the form b = 0). So we
can think of R as a subset of C.

5.2.1 Addition and multiplication

We can add two complex numbers as follows:

(a + bi) + (aÕ + bÕi) = (a + aÕ) + (b + bÕ)i.

We can also multiply two complex numbers:

(a+bi)(aÕ+bÕi) = aaÕ+bbÕ(i)2+abÕi+aÕbi = (aaÕ≠bbÕ)+(abÕ+aÕb)i. (5.2.1.1)

Because I think you are already familiar with complex numbers, I will
state the following theorem without proof:

Theorem 5.2.4. C, with the above notions of addition and multiplication,
is a commutative ring.

Verifications are left as exercises. However, let me make some things
explicit:

• The multiplicative identity is the element 1+0i, which we simply write
as 1.

• The additive identity is the element 0 + 0i, which we simply write as 0.

5.2.2 Visualizing complex numbers

To specify a complex number requires two real numbers. Indeed, we see that
the sets C and R2 admit natural bijections between them: Send the complex
number a + bi to the element (a, b) œ R2. (In the reverse direction, send
(x1, x2) to the complex number x1 + x2i.)

So it is customary to visualize a complex number as living in R2.
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1

1 ≠ i

i

Explicitly, the complex number a + bi is visualized as the point (a, b) in R2.
Thus, one can think of the line with imaginary coordinate 0 (i.e., the line of
points with b = 0) as a copy of R sitting “inside” C.

Remark 5.2.5 (Adding complex numbers is adding two-dimensional vec-
tors). By definition of addition, and using this visualization, it is straight-
forward to check that the addition of complex numbers is visualized as the
addition of vectors.

Visualizing complex multiplication requires di�erent reasoning; for this,
it helps to recall some facts about polar coordinates and complex numbers.

5.2.3 Polar coordinates

Another way to specify a point in R2 is to say how far the point is from
the origin, and what angle (the vector pointing to) the point makes with the
positive x-axis.

≠45o

315o

135o
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Pure mathematicians prefer to use radians, rather than degrees.1 The above
angles in radians are as follows:

≠fi
4 7fi

4

3fi
4

Notation 5.2.6. It is customary to indicate the distance from the origin
using the variable r, and the angle from the positive x-axis using the variable
◊. A complex number of the form a + bi will have distance from the origin
given by

r =
Ô

a2 + b2

and angle from the positive x-axis given by

◊ = arctan(b/a).

5.2.4 Polar coordinates and exponentiation

Polar coordinates take on a deeper meaning when we realize that the function
x ‘æ ex makes sense even if x is a complex number. You may have learned
the following as a definition2 in pre-calculus:

ea+bi = ea(cos(b) + i sin(b)). (5.2.4.1)

In other words, the image of the exponential function is a lot easier to com-
pute when you use polar coordinates. ea+bi is a complex number with distance
ea from the origin, and whose angle from the positive x-axis is given by b
radians. In other words, if you know the polar coordinates r and ◊ of a
non-zero complex number z, we can write

z = eln r+i◊.

1A big reason for doing this is to ensure that the derivative of sin is cos, by the way.
2This is fine as a definition, but this definition arises from an amazing fact about power

series. See Exercise 5.5.7
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When z = 0, there are some minor complications (owing to the fact that polar
coordinates is not a bijection). z may be represented in polar coordinates by
r = 0, and by any choice of ◊. And, z cannot be written in exponential form,
as 0 is not in the image of the function eblah.

Recall that when x and xÕ are real numbers, we know that ex+xÕ = exexÕ .
The following proposition says same is true for complex numbers, with a
wonderful consequence:

Proposition 5.2.7. (a) Let z and zÕ be complex numbers. Then ez+zÕ =
ezezÕ .

(b) In particular, suppose that w is a complex number with polar coordinates
(r, ◊), and wÕ is a complex number with polar coordinates (rÕ, ◊Õ). Then
the product wwÕ has polar coordinates (rrÕ, ◊ + ◊Õ).
In other words, multiplication of complex numbers can be computed by

multiplying lengths, and adding angles.

Proof. Proof of (a): Suppose that z = a + bi and zÕ = aÕ + bÕi. Then
ez = ea(cos(b)+i sin(b)) by definition of exponentiation for complex numbers.
We then see that

ezezÕ = ea(cos(b) + i sin(b)) · eaÕ(cos(bÕ) + i sin(bÕ))
= ea+aÕ(cos(b) + i sin(b)) · (cos(bÕ) + i sin(bÕ))
= ea+aÕ [(cos(b) cos(bÕ) ≠ sin(b) sin(bÕ) + i(sin(b) cos(bÕ) + cos(b) sin(bÕ))]
= ea+aÕ [cos(b + bÕ) + i(sin(b + bÕ))]
= e(a+aÕ)+i(b+bÕ).

= ez+zÕ
. (5.2.4.2)

The next-to-last line is by the definition of exponentiation for complex num-
bers. Previous to that is the angle addition formula for sine and cosine. All
other lines are derived using algebra and the fact that ea+aÕ = eaeaÕ .

To see (b), note that the statement is obviously true when w or wÕ equal
zero. (For example if w = 0, then r = 0, so rrÕ = 0 as well.) So we may as well
assume that both w and wÕ are not zero—in which case w = eln r+i◊ where r is
the length of w, and ◊ is the angle w makes with the positive x-axis. Likewise,
wÕ = eln(rÕ)+i◊Õ . Then, by part (a), we know wwÕ = e(ln(r)+ln(rÕ))+i(◊+◊Õ) =
eln(rrÕ)+i(◊+◊Õ), meaning the length of wwÕ is rrÕ, while the angle is given by
◊ + ◊Õ.
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5.3 C acts on itself (rotation and scaling)

Let us interpret the geometry of Proposition 5.2.7. For this, let z be a
complex number. We will think of z as defining a function C æ C, as
follows:

C æ C, w ‘æ zw.

In other words, z acts on C by multiplication. What does this do to an input
w? Using polar coordinates, we know that z is some complex number with
length r and angle ◊ from the positive x-axis. According to Proposition 5.2.7,
if w has length rÕ and angle ◊Õ, then the product zw has length rrÕ and angle
◊ + ◊Õ. Interpreting this geometrically, we see:

1. Multiplication by z scales the length of w by a factor of r. (It takes
something of length rÕ to something of length rrÕ.)

2. Multiplication by z rotates w by ◊ radians. (It takes something of angle
◊Õ from the positive x-axis to something of angle ◊ + ◊Õ.)

Thus, multiplication by a complex number has the e�ect of scaling and ro-
tating.

Remark 5.3.1. Note that the definition of multiplication of complex numbers—
(5.2.1.1)—is very algebraic and computable, but does not, in any obvious
way, give rise to the geometric interpretation of scaling and rotating. We
utilized the fact that exponentiation (amazingly) builds a bridge between
the algebraic and the trigonometric to see this conclusion.

5.4 Some historical remarks

In school, we learn about complex numbers way after we learn about negative
numbers. Historically, they arose at around the same time! Gerolamo Car-
dano, in the 1500’s, is typically acknowledged as the first mathematician to
make systematic use of negative numbers. (Indeed, it used to be common in
algebra to “move” negative numbers to “the other side of the equality sign”
to render them positive.) His writings were also the first to take seriously
that imaginary numbers ought to be contemplated as numbers.
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5.5 Exercises

Exercise 5.5.1. Show that multiplication of complex numbers is an asso-
ciative operation.

Exercise 5.5.2. Show that multiplication of complex numbers distributes
over addition.

Exercise 5.5.3. Show that any non-zero complex number admits a multi-
plicative inverse.

Exercise 5.5.4. Given z œ C, write z = a + bi. We define z to be the
complex number a ≠ bi.

Show that the function z ‘æ z (this is a function from C to C) is a
bijection.

Exercise 5.5.5. Compute the following:

(a) (3 + 5i)(6 + 2i)

(b) (i)(3 + 2i)

(c) i2022 (This is i raised to the 2022th power.)

(d) (3 + 5i)(3 ≠ 5i)

(e) (1 + 5i)(1 ≠ 5i)

(f) (1 + 5i)2

Exercise 5.5.6. In this exercise, I will tell you the polar coordinates rÕ and
◊Õ for a complex number wÕ, and the polar coordinates rÕÕ, ◊ÕÕ for a complex
number wÕÕ. I want you to tell me the polar coordinates of the product wÕwÕÕ.

(a) rÕ = 1, ◊Õ = 0 and rÕÕ = 1, ◊ÕÕ = fi.

(b) rÕ = 2, ◊Õ = 0 and rÕÕ = 2, ◊ÕÕ = fi.

(c) rÕ = 2, ◊Õ = fi and rÕÕ = 2, ◊ÕÕ = fi.

(d) rÕ = 3, ◊Õ = fi/2 and rÕÕ = 3, ◊ÕÕ = fi/2.

(e) rÕ = 3, ◊Õ = fi/2 and rÕÕ = 5, ◊ÕÕ = fi/3.
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Exercise 5.5.7. You have seen, in a class akin to Calculus II, that the
functions ex, cos(x), sin(x) have the following Taylor series expansions:

ex =
Œÿ

k=0

1
k!x

k

sin(x) =
Œÿ

k=0

(≠1)k

(2k + 1)!x
2k+1

cos(x) =
Œÿ

k=0

(≠1)k

(2k)! x2k

(a) Even though most calculus classes only teach these series expressions
when x is a real number, assume that you are allowed to plug in complex
numbers for x. Under this assumption, prove that

eiy = cos(y) + i sin(y)

for all real numbers y.

(b) (Can be tricky; have to use binomial theorem very wisely.) Assuming
that you may rearrange the terms in these series, prove that

ex+iy = exeiy

for arbitrary real numbers x and y.
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5.6 Extra Credit: Cross product

At this point, you have seen that R is a ring, and R2 is a ring.
You may have also seen that R3 admits an addition (via vector addition)

and a multiplication (via cross product)—in a linear algebra class, or in a
multivariable calculus class. Let me remind you that vector addition of x

and y is given by Q

ca
x1
x2
x3

R

db +

Q

ca
y1
y2
y3

R

db =

Q

ca
x1 + y1
x2 + y2
x3 + y3

R

db

The cross product is given by the formula
Q

ca
x1
x2
x3

R

db ◊

Q

ca
y1
y2
y3

R

db =

Q

ca
x2y3 ≠ x3y2
x3y1 ≠ x1y3
x1y2 ≠ x2y1

R

db .

You may have learned it visually as a “determinant”:

x ◊ y =

-------

i j k

x1 x2 x3
y1 y2 y3

-------

where i, j, k represent the standard basis vectors. R3, equipped with the
usual notion of addition, and with cross product as multiplication, satisfies
all but two properties of being a ring. (I) Identify which properties fail, and
prove that they fail.


