
Lecture 6

Ring homomorphisms

6.1 Goals

1. Understand the definition of a ring homomorphism

2. Understand the natural ring homomorphism from C to M2(R)

3. Understand that ring homomorphisms can allow us to deduce a lot of
interesting facts

6.2 C and M2(R) act on R
2

At this point, we have seen that C acts on R
2 by scaling and rotating. We

have also seen that M2(R)—the ring of 2-by-2 real matrices—acts on R
2 by

linear transformations. In the exercises, we have further seen that rotations
(Exercise 4.5.1) and scaling (Exercise 4.5.9) are examples of linear transfor-
mations.

On the other hand, C and M2(R) feel very di�erent. The former requires
2 real numbers to specify an element, so feels two-dimensional. The lat-
ter requires 4 real numbres to specify an element, so feels four-dimensional.
Moreover, as rings, C is commutative while M2(R) definitely is not.

Is there a way to relate the fact that two seemingly di�erent rings act in
very similar ways?
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64 LECTURE 6. RING HOMOMORPHISMS

6.3 Thinking of complex numbers as matrices
One can take a hint from Exercise 4.5.1, which represents rotation by ◊ as a
matrix A

cos ◊ ≠ sin ◊
sin ◊ cos ◊

B

.

This matrix acts by taking the point (1, 0) to the point (cos ◊, sin ◊). In terms
of complex numbers, it acts by taking the complex number 1 to the complex
number cos ◊ + i sin ◊. In other words, it seems like this matrix behaves like
multiplication by the complex number cos ◊ + i sin ◊.

Taking this hint from mother nature, we could see if the action by a
complex number a + bi acts like the action of the matrix

A
a ≠b
b a

B

.

In fact, let’s define a function from C to M2(R) as follows:

fl : C æ M2(R), a + bi ‘æ
A

a ≠b
b a

B

.

Proposition 6.3.1. fl is an injection.

The above proposition allows you think of C as “sitting inside” M2(R)—
more accurately, fl “embeds” C into M2(R). So you can think of every com-
plex number as a matrix. But that’s just a statement about sets, and one
can find many (meaningless) injections from C to M2(R). Here is a far more
substantive statement about the “algebra” that fl manifests:

Proposition 6.3.2. The function fl satisfies the following properties:

(a) (fl respects addition.) fl(z + zÕ) = fl(z) + fl(zÕ).

(b) (fl respects multiplication.) fl(zzÕ) = fl(z)fl(zÕ).

(c) (fl respects the multiplicative identity.) fl(1) is the multiplicative identity
of M2(R).

Proposition 6.3.2 says that C can be made to sit inside M2(R) in an
incredibly rich way. For example, (a) states that the embedding of C into
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M2(R) “respects addition”—if you want to understand the addiction of two
complex numbers, you can just as well understand the addition of matrices.
And (b) states the same for multiplication.1 The last item is also nice—it
states that the complex number that “does nothing” when multiplied is also
send to the matrix that does nothing when multiplying.

6.4 Ring homomorphisms
Before we delve into the Propositions, their proofs, and the consequences, let
me introduce the terminology we’ll use.

Definition 6.4.1. Let R and S be rings, and let f : R æ S be a function.
We will say that f is a ring homomorphism if the following are satisfied:

(a) For all x, y œ R, f(x + y) = f(x) + f(y). If f satisfies this property, we
say that f respects addition.

(b) For all x, y œ R, f(xy) = f(x)f(y). If f satisfies this property, we say
that f respects multiplication.

(c) Let 1R and 1S be the multiplicative identities of R and S, respectively.
We ask that f(1R) = 1S. If f satisfies this property, we say that f
respects the multiplicative identity.

Thus, Proposition 6.3.2 can be succinctly rephrased as: fl is a ring homo-
morphism. Note that a ring homomorphism is not required to be an injection.
fl, being an injection, is a very special kind of ring homomorphism.

Remark 6.4.2. You may have seen the word “homomorphism” elsewhere.
In general, you should think of a homomorphism as a kind of function that
preserves some structure—and which structure you want to preserve depends
on the context. Here, because we are studying rings, we want ring homo-
morphisms to preserve the structures that rings have.

Warning 6.4.3. Please try to never, ever use the adjective “homomorphic.”
This is despite the fact that the adjective “isomorphic” is commonly used in
mathematics. (We will see this term later in the course.)

1This is kind of cool—I don’t know whether you find matrix multiplication or complex
multiplication more appealing, but (after applying fl) one sees that one can phrase complex
multiplication purely through matrix multiplication.
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An astute reader will notice that there are other properties rings enjoy
that are not mentioned in the definition of a ring homomorphism. For ex-
ample, while the definition above requires that multiplicative identities be
respected, how about additive identities? There seems to be no requirement
that f(0R) = 0S. Likewise, how about additive inverses? Should we require
that f(≠x) = ≠f(x) for all x? As it turns out, such equalities are automatic

just by knowing that f is a ring homomorphism.

Proposition 6.4.4. Let f : R æ S be a ring homomorphism. Then

1. f(0R) = 0S. In other words, f respects additive identities.

2. For every x œ R, f(≠x) = ≠x. In other words, f respects additive
inverses.

Proof. To prove the first claim, note that 0R + 0R = 0R because 0R is an
additive identity. Applying f to both sides, we see that

f(0R + 0R) = f(0R).

On the other hand, because f is a ring homomorphism (and hence respects
addition), the lefthand side equals f(0R) + f(0R). We thus conclude

f(0R) + f(0R) = f(0R).

Now, whatever f(0R) is, it has some additive inverse because S is a ring.
Call it s, and add s to both sides. We then have

s + f(0R) + f(0R) = s + f(0R) (6.4.0.1)
(s + f(0R)) + f(0R) = s + f(0R) (6.4.0.2)

0S + f(0R) = 0S (6.4.0.3)
(6.4.0.4)

where the second line uses associativity, and the last line uses the definition
of additive inverse in S. Now note that 0S is the additive identity of S to
change the lefthand side. We conclude

f(0R) = 0S

which is what we wanted to prove.
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To prove the claim that f respects additive inverses, let ≠x be the additive
inverse to x, so that ≠x + x = 0R. Applying f to both sides, and using the
fact that f respects addition by hypothesis, we conclude

f(≠x) + f(x) = f(0R).

By the first part of our proposition, the righthand side is equal to 0S, so we
have

f(≠x) + f(x) = 0S.

Thus, f(≠x) precisely satisfies the property needed to be the additive inverse
to f(x). Of course, the usual notation for an additive inverse to blah is ≠blah,
so we conclude

f(≠x) = ≠f(x).

6.5 Our first examples of a proof that a func-
tion is a ring homomorphism

For practice, let’s prove Proposition 6.3.2. (We’ll leave it to you to verify
Proposition 6.3.1 as Exercise 6.7.3.)

Proof of Proposition 6.3.2. Let z, zÕ œ C and write z = a+bi and zÕ = aÕ+bÕi.
Proof of (a): We must show that fl(z + zÕ) = fl(z) + fl(zÕ). We have:

fl(z + zÕ) = fl((a + aÕ) + (b + bÕ)i)

=
A

a + aÕ ≠(b + bÕ)
b + bÕ a + aÕ

B

=
A

a ≠b
b a

B

+
A

aÕ ≠bÕ

bÕ aÕ

B

= fl(a + bi) + fl(aÕ + bÕi)
= fl(z) + fl(zÕ).
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Proof of (b): We compute:

fl(zzÕ) = fl((aaÕ ≠ bbÕ) + (abÕ + aÕb)i)

=
A

aaÕ ≠ bbÕ ≠(abÕ + aÕb)
abÕ + aÕb aaÕ ≠ bbÕ

B

=
A

a ≠b
b a

B A
aÕ ≠bÕ

bÕ aÕ

B

= fl(a + bi)fl(aÕ + bÕi)
= fl(z)fl(zÕ).

Proof of (c): If z = 1, then a = 1 and b = 0, so

fl(1) =
A

1 0
0 1

B

.

Remark 6.5.1 (The ingredients of proving that a function is a ring ho-
momorphism). You may often in life (or, more realistically, in this course)
be asked to show that a particular function is a ring homomorphism. The
ingredients going into such proofs are almost all the same:

1. An understanding of what addition is in both the domain and in the
codomain.

2. An understanding of what multiplication is in both the domain and in
the codomain.

3. An understanding of what the function in question does—e.g., how it
is defined.

For example, to show above that fl(z + zÕ) = fl(z) + fl(zÕ), I had to do the
following (and I could have done these in any order):

• Compute z + zÕ so I understand the term inside the parentheses in
fl(z + zÕ).

• Compute fl(z + zÕ) using my understanding of fl.

• Perhaps by being clever, see that fl(z + zÕ) is indeed a sum of two
elements in the codomain. This is often the least trivial step, and
requires an understanding of addition in the codomain.
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• Compute fl(z) and fl(zÕ), and show that their sum is the desired term.

Note that these steps only require knowledge of fl and of the additions in
C and M2(R), because the thing I’m trying to prove only involves these two
things. To prove fl(zzÕ) = fl(z)fl(zÕ), one would have to use familiarity with
multiplication, not addition.

6.6 Applications of fl being a ring homomor-
phism

A ring homomorphism like fl can give you a lot of information—both about
the domain, and the codomain. Here are a few examples of data flowing in
one direction: We learn a lot about certain matrices just by knowing things
about C.

Some terminology: Recall that a “corollary” is an immediate consequence
of some other logical statement.

Corollary 6.6.1 (Of Proposition 6.3.2). Let A and B be matrices of the
following form:

A =
A

a ≠b
b a

B

, B =
A

c ≠d
d c

B

.

Then AB = BA.

Proof. Let z = a + bi and w = c + di, so A = fl(z) and B = fl(w). We have
that

AB = fl(z)fl(w) = fl(zw) = fl(wz) = fl(w)fl(z) = BA.

The middle equality uses the fact that multiplication in C is commutative.
The two equalities adjacent to the middle use the fact that fl is a ring homo-
morphism (so that fl respects multiplication).

Of course, one could have prove that AB = BA by doing matrix compu-
tations, but there is something very satisfying about seeing this fact by only
relying on more birds-eye-view truths: Because C can be made to embed
inside M2(R) in a nice, algebraic way, and because multiplication in C is
commutative, we’ve identified a bunch of matrices in M2(R) (the image of
C) which commute with each other.

Here is a far less trivial application. Before we state the result, let us set
some notation:
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Notation 6.6.2 (Polynomials of matrices). Recall that given a matrix A
and a real number ⁄, the notation ⁄A represents the scaling of A by ⁄
(Definition 3.3.10). More generally, we will often treat the number ⁄ also as
a diagonal matrix with entries ⁄ along the diagonal (and zeroes elsewhere).

Finally, we also let Ak denote the matrix obtained by multiplying A by
itself k times.

Example 6.6.3 (Polynomial equations of matrices). In this way, an expres-
sion like

A3 + fiA2 ≠
Ô

2
makes sense. For example, if

A =
A

2 ≠1
3 5

B

then the above expression can be written out as
A

2 ≠1
3 5

B A
2 ≠1
3 5

B A
2 ≠1
3 5

B

+
A

fi 0
0 fi

B A
2 ≠1
3 5

B A
2 ≠1
3 5

B

≠
AÔ

2 0
0

Ô
2

B

.

And we can ask someone to solve the matrix equation

A3 + fiA2 ≠
Ô

2 = 0

to find a matrix A so that the lefthand side equals the zero matrix.

Theorem 6.6.4. Fix any collection of real numbers a0, . . . , an. Then the
matrix equation

anAn + . . . + a2A
2 + a1A + a0 = 0

has a solution. In fact, one can find a matrix A satisfying this equation for
which A is of the form

A =
A

a ≠b
b a

B

.

Proof. Consider the polynomial equation

anzn + . . . + a2z
2 + a1z + a0 = 0.

By the fundamental theorem of algebra, this equation has a complex number
solution. Let w = a + bi be one solution, and define A to be fl(w). Now, by
applying fl on both sides of the equation, we know that

fl(anwn + . . . + a2w
2 + a1w + a0) = fl(0).
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The righthand side of course simplifies to the zero matrix. The lefthand side
simplifies as follows:

fl(anwn + . . . + a2w
2 + a1w + a0) = fl(anwn) + . . . + fl(a2w

2) + fl(a1w) + fl(a0)
= fl(an)fl(wn) + . . . + fl(a2)fl(w2) + fl(a1)fl(w) + fl(a0)
= anfl(wn) + . . . + a2fl(w2) + a1fl(w) + a0

= anAn + . . . + a2A
2 + a1A + a0

The first equality is because fl respects addition. The next equality is because
fl respects multiplication. The next one involves just writing out what fl does
to the complex number an = an + 0i, and interpreting multiplication by a
diagonal matrix as scaling. The last equality uses the fact that fl respects
multiplication, so that fl(wk) = fl(w)k = Ak.

Example 6.6.5. Is there some 2-by-2 real matrix satisfying the equation

A3 + fiA2 ≠
Ô

2 = 0?

Yes, there is. If you let w be the complex number satisfying the equation
w3 + fiw2 ≠

Ô
2 = 0, then fl(w) is a matrix that satisfies the above equation

(as shown in the above proof). Now, the above proof uses the fundamental
theorem of algebra—this theorem tells you that such a w exists, but it doesn’t
tell you how to find it. Because of this, while we know that a solution exists,
we don’t have much access to what the solution actually is. That is for a
di�erent math course.

Regardless, isn’t it incredibly powerful to know that a solution must exist?
This is in great contrast to many problems in life, and in math, where we
try to tackle problems without knowing even if there is a solution.

So far, none of our applications/results have relied on the fact that fl is
an injection. Here is one application that does:

Corollary 6.6.6. Let p be any real, degree n matrix polynomial. Then
there are at least n matrices (counted with multiplicity) that satisfy the
polynomial.

Proof. Think of p as a polynomial of a complex variable. The fundamental
theorem of algebra exactly guarantees n roots (counted with multiplicity) to
a degree n polynomial. Because fl is an injection, distinct elements of C are
sent to distinct elements of M2(R), concluding the proof.
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6.7 Exercises
Exercise 6.7.1. Let f : C æ C be the function taking a + bi to the complex
number a ≠ bi. Show that f is a ring homomorphism and a bijection.

Exercise 6.7.2. Let f : M2(R) æ M2(R) be the function taking a matrix
to its transpose.

(a) Show that f is not a ring homomorphism. (What is the one homomor-
phism property that f fails?)

(b) Consider the same function f , but now endow the codomain with the
following multiplication:

A
a b
c d

B A
aÕ bÕ

cÕ dÕ

B

=
A

aÕa + bÕc aÕb + bÕd
cÕa + dÕc cÕb + dÕd

B

while endowing the codomain with the usual matrix multiplication. As-
suming that this makes the codomain a ring (it does, by the way) show
that f now is a ring homomorphism.

Exercise 6.7.3. Prove Proposition 6.3.1.

Exercise 6.7.4. Let Z be the ring of integers, and consider the function f :
Z æ Z defined by f(a) = 3a. Say whether or not f is a ring homomorphism,
providing a proof of your claim. If f is not a ring homomorphism, indicate
all the ring homomorphism properties that are not satisfied.

Exercise 6.7.5. Let Z be the ring of integers, and consider the function g :
Z æ Z defined by f(a) = a+9. Say whether or not g is a ring homomorphism,
providing a proof of your claim.If g is not a ring homomorphism, indicate all
the ring homomorphism properties that are not satisfied.

Exercise 6.7.6. Let Z be the ring of integers, and consider the function h :
Z æ Z defined by h(a) = 0. Say whether or not h is a ring homomorphism,
providing a proof of your claim. If h is not a ring homomorphism, indicate
all the ring homomorphism properties that are not satisfied.

Exercise 6.7.7. (a) Find a 2-by-2 real matrix of the form

A =
A

a ≠b
b a

B

satisfying the matrix equation A2 = ≠1.
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(b) Can you find a matrix that is not of the above form, satisfying A2 = ≠1?

(c) How many 2-by-2 matrices are there that satisfy the equation A2 = ≠1?

Exercise 6.7.8. Fix a collection of matrices C0, . . . , Cn of the form

Ck =
A

ak ≠bk

bk ak

B

for real numbers a0, b0, a1, b1, . . . , an, bn. Show that there exists a real, 2-by-2
matrix A satisfying the matrix equation

C0 + C1A + C2A
2 + . . . + CnAn = 0.
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6.8 Extra Credit: Quaternions
In the last extra credit assignment, you saw that the famous cross product on
R

3 (along with the usual notion of addition) does not render R3 a ring. This
does not prove that R

3 has no ring structure compatible with its addition—
but it really is a fact that R3 does not have such a ring structure that is also
compatible with scaling by R. The proof is inaccessible to us at the moment.

You may wonder if there is a ring structure on R
4. Let’s explore a candi-

date here.
Using the bijection R

4 ≥= R ◊ R
3, let us write an element of R4 as a pair

(t, x)

where t œ R is a real number and x = (x1, x2, x3) is an element of R3. We
can define the following operation on R

4:

(t, x) · (tÕ, xÕ) = (ttÕ ≠ x · xÕ, x ◊ xÕ + txÕ + tÕx).

Here, x · xÕ is the dot product, while x ◊ xÕ is the cross product, and txÕ is
scaling by a factor of t.

The set R
4, endowed with the usual vector addition, and with this mul-

tiplication, is called the quaternions. Sometimes, we call the quaternions
Hamiltonians after the mathematician who discovered them. For this rea-
son, we often write H (instead of R4).

(a) Consider the elements

i = (0, (1, 0, 0)), j = (0, (0, 1, 0)), k = (0, (0, 0, 1)), ≠1 = (≠1, (0, 0, 0)).

Prove that the squares of i, j, k all equal ≠1.

(b) Prove that H (the set of quaternions with the above multiplication and
addition) forms a ring.

(c) Given a quaternion (t, x), define its conjugate to be (t, ≠x). By contem-
plating the product (t, x) · (t, ≠x), prove that any non-zero element of
R

4 admits a multiplicative inverse. (By the way, the lingo is that the
quaternions are hence a “division ring.”)

(d) We’ve seen that there is an injective ring homomorphism from C to
M2(R). Can you find an injective ring homomorphism from H to M4(R)?


