
Lecture 7

Polynomial rings

7.1 Goals
(a) Become familiar with computations of products and sums of polynomials.

(b) See polynomial rings in many variables.

(c) Begin to utilize properties of special rings to prove statements about
polynomial rings (by doing the exercises.)

7.2 Coming attraction: Algebraic geometry
We’ve seen the following examples of commutative rings:

Z,Q,R,C, Mn(R),

where the last example—n-by-n matrices with entry in a ring R—is never
commutative when n Ø 2. We’ve studied most M2(R), because it acts in a
geometrically interesting way on R

2.
Soon, we’re going to start seeing a completely di�erent way that rings

and geometry interact.
The general philosophy is that any kind of shape—which we often call

a space in mathematics—can be understood by the collection of functions
on the shape. And where do rings come in? The point is that the most
basic collection of functions on a shape always forms a ring—we can add
and multiply functions. And, in fact, it is most common to be in a setting
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76 LECTURE 7. POLYNOMIAL RINGS

where the ring of function is commutative. So commutative rings emerge
very naturally in geometry.

It’s fair to say that we can classify di�erent branches of math by classifying
what kinds of shapes we study, and what kinds of functions we study between
shapes. Today we’re going to foray into algebraic geometry, where “algebraic”
is a proxy for “polynomial.” So we’ll want to understand what we mean by
polynomials.

Moreover, polynomial rings are great examples of rings. They are simple
to define, and easy to ask questions about—but some questions are very hard
to answer. These make for the best math problems. (See Remark 8.3.7.)

7.3 Polynomials in one variable
Let’s begin by fixing a commutative ring R. We call this the base ring. For
visualization purposes, we’ll often choose our base ring to be R.

Remark 7.3.1. In algebraic geometry, the most common base ring is C, and
sometimes Z. But it takes some sophistication to understand the sense in
which there is geometry in studying Z. As for C, it’s harder to visualize C

2

(which is equivalent to R
4) because we don’t all have practice understanding

4-dimensional space. On the other hand, a nice way to think about algebraic
geometry is that it gives us tools for understanding shapes in four-dimensional
space without having to visualize them. We probably won’t get a chance to
study what I mean by this.

Definition 7.3.2. A polynomial over R, or a polynomial with coe�cients in

R, is an expression

p(x) = a0 + a1x + a2x
2 + . . . + anxn

where each ai œ R. As usual, we say that ai is the ith degree coe�cient of
the polynomial.

Notation 7.3.3. We may write the above polynomial using summation no-
tation as:

nÿ

i=0
aix

i.

Finally, we will often write p instead of p(x), for brevity.
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Remark 7.3.4. Books often say that x is a “formal variable,” but this is
a meaningless phrase. We use x as a useful visual placeholder to remind us
what degree the coe�cient ai corresponds to, and also to remind us of the
use of x in high school algebra.

Notation 7.3.5. Fix a commutative base ring R. We let R[x] denote the
set of all polynomials over R.

Example 7.3.6. Here are examples of elements of Z[x]:

≠ 3 + 2x ≠ 9x4, 9x3, 13x4 ≠ x1000, 0.

Because Z µ R, the above are all also elements of R[x]. Here are examples
of elements in R[x] that are not in Z[x]:

fi, 1 ≠ fix3,
Ô

7x4,
1
e

x.

Finally, here are examples of elements in C[x] that are not in R[x]:
Ô

5i + 7x, ≠i, 9x2 ≠ ix3 + 19x5.

Remark 7.3.7. Note that, even though we tend to write an undetermined
polynomial as a0 + a1x + . . . + anxn, when we write out a polynomial, we
often write 1 ≠ 3x rather than 1 + (≠3)x. This is a common convention you
are used to, and we do it often to save space. As we will see, this is notation
that is also consistent with the fact that (≠3)x is in fact the additive inverse
to 3x. So ≠(3x) is the same thing as (≠3)x.

Remark 7.3.8. You can think of a polynomial over R just as an ordered
collection of elements of R: The data of a0 + a1x + . . . anxn is equivalent to
the data of the ordered n-tuple (a0, a1, . . . , an) œ Rn.

In fact, it’s even healthy to think about the set R[x] as the subset of RŒ

for which only finitely many coordinates are non-zero.
(Take a moment to think about this if you haven’t yet. By RŒ, we

mean the collection of all functions from the set of non-negative integers
{0, 1, 2, . . .} to the set R. This is just as Rn can be thought of as the collection
of all functions from the set {1, 2, . . . , n} to R. Finally, note that for an
element of RŒ to have only finitely many non-zero coordinates means that
we can find a largest n so that, whenever i > n, ai = 0.)
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Definition 7.3.9. Let p be a polynomial over R. Then the degree of p is
max{i |ai ”= 0}. In other words, the degree of p is the largest index i for
which the ith coe�cient is non-zero.

Warning 7.3.10. By convention, we will declare the maximum of the empty
set to be ≠Œ. In particular, the degree of the 0 polynomial is declared to
be ≠Œ. All other polynomials have some non-negative integer degree.

Example 7.3.11. The first four polynomials in Example 7.3.6 have degrees
4, 3, 1000, and ≠Œ.

7.3.1 Addition and multiplication of polynomials
Definition 7.3.12 (Addition of polynomials). One can add two polynomials.
If q(x) = b0 + b1x + . . . + bmxm is another polynomial and m Æ n we define

p(x)+q(x) = (a0+b0)+(a1+b1)x+. . .+(am+bm)xm+am+1x
m+1+. . .+anxn.

In summation notation,

p(x) + q(x) =
nÿ

i=0
(ai + bi)xi

where it’s understood that bi = 0 for all i > m.

Remark 7.3.13. Note that the definition of polynomial addition depends
only on the definition of addition in R. In fact, you can think of it as vector
addition in RŒ. (See Remark 7.3.8.) For example, if you think of two
polynomials as encoding the ordered tuples (a0, a1, . . .) and (b0, b1, . . .), then
the sum of polynomials is indeed the vector sum

(a0 + b0, a1 + b1, . . .).

Example 7.3.14. Here are some examples of polynomial addition:

1. p(x) = 7x + 9x3, q(x) = 8x =∆ p(x) + q(x) = 15x + 9x3.

2. p(x) = 7x + 9x3, q(x) = ≠7x ≠ 9x3 =∆ p(x) + q(x) = 0.

3. p(x) = 7x+9x3, q(x) = fi+
Ô

2x5 =∆ p(x)+q(x) = fi+7x+9x3+
Ô

2x5.
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Note that the first two additions could be construed as taking place in
Z[x],Q[x],R[x], or C[x]. However, the last addition takes place in either
R[x] or C[x].

Definition 7.3.15 (Multiplication of polynomials). If p(x) = a0 + a1x +
. . . anxn and q(x) = b0 + b1x + . . . + bmxm are polynomials over R, we define
the product of p and q to be

p(x)q(x) = (a0b0) + (a0b1 + a0b1)x + . . . + anbmxm+n.

In summation notation,

p(x)q(x) =
m+nÿ

i=0

Q

a
ÿ

j+k=i

(ajbk)
R

b xi

where it’s understood that bi = 0 for all i > m.

Remark 7.3.16. Note that multiplication depends both on multiplication
and addition in the base ring R. For example, the ith coe�cient is given by
multiplying aj and bk, then summing the terms ajbk over all j, k satisfying
j + k = i.

Remark 7.3.17. We have so far seen examples of rings where addition looks
just like vector addition—C and Mn(R)—but where multiplication is inter-
esting. The same is true for polynomials. (You may have never thought of
polynomial multiplication as interesting, but it’s certainly more interesting
than polynomial addition. )

Example 7.3.18. For explicitness, here are the degree 2, 3, and 4 terms of
the product pq:

(a0b2 + a1b1 + a2b0)x2 + (a0b3 + a1b2 + a2b1 + a3b0)x3

+ (a0b4 + a1b3 + a2b2 + a3b1 + a4b0)x4.

Example 7.3.19. Let p(x) = 1 ≠ 3x + 7x2 and q(x) = 8 ≠ 5x3. Then pq is
the polynomial

8 ≠ 24x + 56x2 ≠ 5x3 + 15x4 ≠ 35x5.

Let r(x) = 2 ≠ 2x. Then

p(x)r(x) = 2 ≠ 8x + 20x2 ≠ 14x3.
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7.3.2 R[x] as a ring
We wouldn’t talk about the “polynomial ring” if it weren’t a ring, would we?

Theorem 7.3.20. Fix a commutative ring R. Then R[x]—with the opera-
tions of addition and multiplication defined above—is a commutative ring.

Remark 7.3.21 (Notation). To be explicit:

1. The additive identity of R[x] is the polynomial whose coe�cients are
all 0. (So ai = 0 for all i.) We write this polynomial as 0, as we have
already done in earlier examples.

2. The multiplicative identity of R[x] is the polynomial whose 0th degree
coe�cient is 1, and whose other coe�cients are all 0. (So a0 = 1, and
for all i Ø 1, we have ai = 0.) We write this polynomial as 1.

3. Given a polynomial p(x) = a0 + a1x + . . . anxn, the additive inverse ≠p
is the polynomial ≠a0 + (≠a1)x + . . . + (≠an)xn, otherwise written as
≠a0 ≠ a1x ≠ a2x2 ≠ . . . ≠ anxn.

We’ll also note that proving commutativity of multiplication, associativity
of multiplication, and distributivity, all come down to (i) the corresponding
properties of R, and (ii) clear use of summation notation.

Remark 7.3.22. When you see an element like 53x œ R[x], you can also
interpret it as the product of the element 53 (which is a degree 0 polynomial)
and x (which is a degree 1 polynomial). Likewise, 12x2 can be interpreted
also as the product of 12 and x2, or as the product of 3x with 4x.

Similarly for addition: While we have said that “a polynomial is an ex-
pression” like 4 + 3x ≠ 7x2, we can also interpret this expression literally:
4, 3x, and ≠7x2 are all elements of R[x], and this polynomial is the sum of
these three elements.

7.3.3 Degrees
The following notion turns out to be very useful:

Definition 7.3.23. Let R be a commutative ring. R is called an integral

domain if “a ”= 0 and b ”= 0 =∆ ab ”= 0. Equivalently, R is an integral
domain if whenever the product ab equals 0, one may conclude that at least
one of a or b equals zero.
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Example 7.3.24. Every commutative ring we have encountered so far is an
integral domain. (See Exercise 7.5.4.)

M2(R) is not an integral domain for at least two reasons. First, it is not
commutative. Second, there exists non-zero matrices A, B for which AB = 0.

The degree of a polynomial (Definition 7.3.9) acts in a fairly controlled
way with respect to addition and multiplication, especially when R is an
integral domain:

Proposition 7.3.25. Fix a commutative base ring R. Let p and q be degree
n and m polynomials, respectively, over R. Then

1. deg(p + q) Æ max(deg(p), deg(q)). In other words, the degree of p + q
is at most the bigger of the degree of p and q.

2. Suppose that R is an integral domain. Then deg(pq) = deg(p)+deg(q).

Example 7.3.26. If p = 0, then pq = 0, so deg(pq) = ≠Œ. By convention,
we will say that ≠Œ + m = ≠Œ for any value of m.

If p = 2 ≠ x2 and q = 2 + 3x + x2, then deg(p + q) = deg(4 + 3x) = 1,
and 1 is less than or equal to max(deg(p), deg(q)) = max(2, 2) = 2.

7.4 Polynomials in finitely many variables
Do you remember that, for any ring R, Mn(R) is a ring again? (Theo-
rem 3.5.2.) This allows us to contemplate rings like M2(M2(M2(R))) (though
we haven’t yet).

Theorem 7.3.20 lets us do the same thing: Fix a commutative ring R.
Then R[x] is a commutative ring. So we can iterate the construction to
obtain a new commutative ring!

We’ll clean up some notation to do this. While we’ve used R[x] to denote
a polynomial ring whose formal variable is x, we could just as well define
a ring R[y] whose formal variable is y. The idea that we can use di�erent
variables is useful if we want to iteratively study polynomial rings—R[x][y]
is much better notation than R[x][x].

Remark 7.4.1. That we use x and y for variables is a historical convention.
One could easily have used a symbol like ¸ and written a polynomial as
a0 + a1¸ + a2¸2 + . . . + an¸n œ R[¸].
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Let’s study what (R[x])[y] is, then. An element of this set is a polynomial
(whose formal variable is denoted y) with coe�cients in R[x]. In other words,
an element can be written as

p0 + p1y + p2y
2 + . . . pnyn (7.4.0.1)

where each pi œ R[x]. For every polynomial pi, let’s write out its coe�cients
as follows:

pi(x) = a0,i + a1,ix + a2,ix
2 + . . . .

Then we can write (7.4.0.1) explicitly as

(a0,0 + a1,0x + a2,0x
2 + . . .) + (a0,1 + a1,1x + a2,1x

2 + . . .)y
+ (a0,2 + a1,2x + a2,2x

2 + . . .)y2

+ . . .

+ (a0,n + a1,nx + a2,nx2 + . . .)yn.

Distributing out the variables, and re-ordering the addition (remember that
(R[x])[y] is a ring by Theorem 7.3.20), we end up with the expression

a0,0 + a1,0x + a0,1y + a2,0x
2 + a1,1xy + a0,2y

2 + . . .

which is far more neatly organized using summation notation:
ÿ

ai,jx
iyj.

(I am being lazy and not writing the bounds of the summation. This is to
reduce clutter—I don’t want to make new notation for the upper bounds.
But, do be careful: The summation is indexed over both di�erent values of
i, and over di�erent values of j.)

The upshot : One can interpret an element of (R[x])[y] as a polynomial
in two variables. Note also that we see a natural bijection between (R[y])[x]
and (R[x])[y]. So let’s introduce the following notation:

Notation 7.4.2. Let R be a commutative ring. We let

R[x, y]

denote the set of polynomials in two variables x and y, with coe�cients in
R. More generally, we let

R[x, y, z]
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denote the set of three-variable polynomials, and when we would rather use
symbols like x1, x2, . . . rather than x, y, . . ., we let

R[x1, x2, . . . , xn]

denote the set of polynomials in n variables (with coe�cients in R). Note that
all of these are commutative rings by iterated applications of Theorem 7.3.20.

Example 7.4.3. The following are elements of Z[x, y]:

0, 1, x+x2≠x3, y2≠y3, 3+x+y≠8xy, 16x≠9y2+17xy3.

The following are elements of Z[x, y, z]:

6, z + z2, y2 ≠ y3, 3 + x + y ≠ 8xz, 16xyz ≠ 9y2.

And the following are elements of Z[x1, x2, x3, x4]:

8 ≠ x1 + x4, x1x2x3x4 + x1x
3
3 ≠ x9

4, x1x
2
2x

9
3.

Remark 7.4.4. Fix a commutative ring R. By induction on n, the collec-
tion of polynomials R[x1, . . . , xn] forms a commutative ring. (The base case
n = 0 is the assumption that R is commutative. The inductive step uses
Theorem 7.3.20 and the identification

R[x1, . . . , xn] ≥= (R[x1, . . . , xn≠1)[xn]

(which we exposited in the discussion preceding Notation 7.4.2). Using this
identification, you can confirm that addition and multiplication is what you
think it is. For example, we have that

(x1 ≠ 3x1x2 + x2
3)(1 + x2) = x1 ≠ 2x1x2 ≠ 3x1x

2
2 + x2

3 + x2x
2
3.

7.5 Exercises
Exercise 7.5.1. For each polynomial p below, state what the degree 4 coef-
ficient of p2 is.

(a) p(x) = 8 ≠ 2x + 6x2 ≠ 5x3 + x4 ≠ 35x5.

(b) p(x) = 5x3 + 15x4 ≠ 35x5.
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(c) p(x) = 8 ≠ 2x + 6x2.

Exercise 7.5.2. For each polynomial p below, state what the coe�cient of
the x2y3 term of p2 is.

(a) p(x, y) = 8 ≠ x2 ≠ fixy + 7xy2 + 5y3 + 3x2y3 + x6 ≠ y8 + x2y7.

(b) p(x, y) = 8 ≠ x2 ≠ fixy + 5y3.

(c) p(x, y) = 5y3 + 3x2y3 + x6 ≠ y8 + x2y7.

Exercise 7.5.3. Prove Proposition 7.3.25.

Exercise 7.5.4. Show that if R is an integral domain, then R[x] is an integral
domain. (Hint: This may require some degree of contemplation.)

Exercise 7.5.5. Suppose R is an integral domain, and fix an element a œ R.
Show that there are at most two elements in R that square to a. (Hint:
For any two elements x, y in a commutative ring, the distributive property
implies that x2 ≠ y2 = (x + y)(x ≠ y).)

Exercise 7.5.6. A commutative ring is called a field if 0 ”= 1, and if every
non-zero element admits a multiplicative inverse.

Show that R[x] is never a field (regardless of the choice of commutative
ring R).

Exercise 7.5.7. In this exercise, we’ll see that di�erent equations can be
solved in di�erent rings.

(a) Is there an element w in the ring Z for which 3w = 4?

(b) Is there an element w in the ring Q for which 3w = 4?

(c) Is there an element p in the ring Z[x] for which 4p2 = x2 + 2x + 1?

(d) Is there an element p in the ring Q[x] for which 4p2 = x2 + 2x + 1?

Exercise 7.5.8. Let R be an integral domain. Suppose there exists a poly-
nomial p œ R[x] for which p2 = x2 + 1. What must be true of the element
1 + 1 in R?

Exercise 7.5.9. Suppose that a0, a1, a2 are rational numbers, and suppose
that there is an element p œ R[x] for which p2 = a0 + a1x + a2x2. Prove that,
in fact, p œ Q[x].
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Exercise 7.5.10. Composition is not an operation that has anything to do
with the ring structure of R[x], but I’ll introduce it anyway because it’s such
an important operation.

Let p and q be polynomials over R. Then we define the composition p ¶ q
to be the polynomial

p(q(x)) = a0 + a1q(x) + a2(q(x)2) + . . . + an(q(x)n).

(a) Show that if p and q have degree less than or equal to 1, then so does
their composition p ¶ q.

(b) Given a polynomial p, let ·(p) denote its degree Æ 1 truncation. Explic-
itly, if p = a0 + a1x + a2x2 + . . . anxn, then

·(p)(x) = a0 + a1x.

If p and q are arbitrary polynomials, can you find any relationships be-
tween the following four polynomials?

(i) pq

(ii) p ¶ q

(iii) ·(p)·(q)
(iv) ·(p) ¶ ·(q)
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7.6 Extra credit: Universal property of poly-
nomial rings

Let S be an arbitrary ring.

(a) Prove that there exists exactly one ring homomorphism from Z to S.

Now consider the polynomial ring Z[x].

(b) Let homRing(Z[x], S) denote the set of all ring homomorphisms f from
Z[x] to S. Consider the function

evx : homRing(Z[x], S) æ S, f ‘æ f(x).

Show that evx is a bijection.

(What the above says is that to specify a ring homomorphism from Z[x]
to S is the same thing as just specifying an element of S. This is called
the universal property of Z[x].)

(c) Now assume that S is commutative. Consider the function

ev : homRing(Z[x1, . . . , xn], S) æ Sn, f ‘æ (f(x1), . . . , f(xn)).

Show that ev is a bijection.


