
Lecture 9

Ideals and algebraic functions

9.1 Goals
1. Recall what it means to restrict functions to a subset.

2. (Definitional.) Understand what algebraic functions are on an algebraic
set

3. Understand that a single algebraic function may have many di�erent
polynomial extensions

4. (Definitional.) Become familiar with the algebraic definition of ideal

5. Become familiar with the main example of an ideal: The set of all
polynomial functions that vanish on a given algebraic set

9.2 Recollection: Restriction of functions, and
extensions of functions

In what follows, we fix a set Y . In many examples, Y will be some Euclidean
space R

n.

9.2.1 Definition of restriction of functions
Let g : Y æ R be a function, and let S µ Y be any subset. Then, of course, g
defines a function on S: Any element s œ S is an element of Y , so g(s) makes

101



102 LECTURE 9. IDEALS AND ALGEBRAIC FUNCTIONS

sense. When we consider g as a function on S, we will write the notation

g|S.

We call this “g restricted to S,” or “the restriction of g to S.” To make the
domain and codomain clear, one can also write:

g|S : S æ R.

Example 9.2.1. Two very di�erent functions may restrict to the same func-
tion on S! For example, if S = {0} µ R, then all the following functions on
R restrict to the same function on S:

g(s) = x2, h(s) = x, j(s) = sin(x), k(s) = e0 ≠ 1.

So even though g ”= h, it is true that g|S = h|S in the above examples.

9.2.2 Extensions
Sometimes, we want to ask if a function on a subset extends to a function
on a big set.

Definition 9.2.2. Fix S µ Y , and a function f : S æ R. We say that a
function g : Y æ R is an extension of f if g|S = f . In other words, g is an
extension of f if for every x œ S, we have g(x) = f(x).

What we saw in Example 9.2.1 is that a single function on S may have
many di�erent extensions to Y .

9.2.3 Restriction is a ring homomorphism
Given a set S, the collection of real-valued functions on S is a ring. For
example, given two functions f1, f2 : S æ R, we can define a new function
f1 + f2 by declaring

(f1 + f2)(x) = f1(x) + f2(x).

Then the constant function sending every x œ S to 0 œ R is the additive
identity, and given a function f , its additive inverse is the function sending
x to ≠f(x).
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Likewise, one can define a new function f1f2 by declaring

(f1f2)(x) = f1(x)f2(x).

Then the function sending every element of S to the number 1 is a multi-
plicative identity. In fact, the set of all functions on S is a commutative ring.
This is a fancy way of articulating an intuition you already had: You can
add and multiply functions.

Proposition 9.2.3. Let Y be a set and fix a subset S µ Y . Restriction

{Functions Y æ R} æ {Functions S æ R}, g ‘æ g|S

is a ring homomorphism. In other words, for any two functions g, h : Y æ R,
we have

(g + h)|S = g|S + h|S, (gh)|S = g|Sh|S; and 1|S = 1.

9.3 Algebraic functions
So far we’ve defined what algebraic sets are—these are subsets of Rn that can
be realized as the common zero set of some collection of functions. These
algebraic sets are the kinds of shapes I’d like to study for the moment. I
mentioned in Section 7.2 that fields of math can be divided into the kinds
of spaces, and the kinds of functions between these spaces, one decides to
contemplate. So let me tell you what kinds of functions I want to study.

Definition 9.3.1. Let X µ R
n be an algebraic set. Then a function f :

X æ R is called an algebraic function if f extends to some polynomial
function on R

n. Put another way, f is algebraic if there exists a polynomial
p œ R[x1, . . . , xn] so that, for every x œ X, we have f(x) = p(x).

Notation 9.3.2. Let X µ R
n be an algebraic set. We let

OX(X)

denote the set of algebraic functions on X.

Remark 9.3.3. The notation OX(X) is a bit funny. One might be tempted
to simply write OX or O(X), but I promise that OX(X) is a notation used
widely enough that people will know what you mean.
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Remark 9.3.4. There is a generalization to any commutative ring: Fix a
commutative base ring R, and an algebraic set X µ Rn. Then a function
f : X æ R is also called algebraic if there exists a polynomial function
p œ R[x1, . . . , xn]—which one can think of as a function Rn æ R—so that p
agrees with f at all points of X.

Remark 9.3.5. So the word “algebraic” is an adjective that can be used
for two kinds of objects: Subsets of Rn (Definition 8.3.8), and functions on
subsets of Rn (Definition 9.3.1).

Example 9.3.6. Let X = R
n. Then OX(X) = R[x1, . . . , xn].

Example 9.3.7. Let X = {a1, . . . , an} µ R be any finite collection of n
points on the real line. Then a function f : X æ R is just a choice of n real
numbers:

t1 =: f(a1), . . . , tn =: f(an).

Moreover, we can find a polynomial in one variable, p(x), so that for all
elements ai œ x, we have that p(ai) = ti. For example, take:

p(x) =
nÿ

i=1

Q

a((x ≠ ai) + ti)
Ÿ

j ”=i

x ≠ aj

ai ≠ aj

R

b .

So, if X is any algebraic subset of R, then any function on X is algebraic.
But the situation is very di�erent for algebraic subsets in higher dimensions.
There are many functions on an algebraic set that are not algebraic.

So, if X is a set of n distinct points in R, we have a bijection

OX(X) ≥= R
n.

Example 9.3.8. Let X µ R
2 be the x-axis. Then the function f(x) = x2 on

the x-axis has many extensions to R
2. For example, g(x, y) = x2 +y restricts

to f along X. So does the function h(x, y) = x2 + ey ≠ 1. It turns out g is
polynomial, while h is not. Regardless, the existence of g means that f is an
algebraic function on X.

Example 9.3.9. Let X µ R
2 be the x-axis. Then the function f(x) = sin(x)

is not algebraic. The reason is as follows: Any polynomial function g(x, y)
must either (i) have only finitely many 0s along X, or (ii) be identically equal
to 0 along X.
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Here is why: The set X is defined by the equation y = 0, so the restric-
tion of g(x, y) to X is computed by plugging in y = 0. Writing g(x, y) =q

i,j ai,jxiyj, we see that g|X(x, 0) = g(x, 0) = q
i,j ai,jxi0j = q

i,j ai,0xi. (Be-
cause if j Ø 1, we see yj = 0j = 0.) In paticular, g|X is a polynomial in one
variable, which means it must satisfy either (i) or (ii) above.

So f could not be the restriction of any polynomial g. This shows f is
not an algebraic function on X.
Remark 9.3.10. Fix an algebraic set X µ R

n. By definition, given any
polynomial p œ R[x1, . . . , xn] restricts to an algebraic function on X. Thus,
we have a restriction map

R[x1, . . . , xn] æ OX(X).

More generally, if Y µ R
n and X µ R

n are both algebraic sets, and if X µ Y ,
then we have a restriction map

OY (Y ) æ OX(X).

9.4 Algebraic functions can have di�erent poly-
nomial extensions

Let X = {(x, y) | y2 ≠ x = 0}. (This is a parabola inside R
2.) Let f be the

function that sends every point (x, y) œ X to the number x.
Then f has many di�erent algebraic extensions:
1. Define g : R2 æ R to be the function g(x, y) = x. Then, of course,

g|X = f .

2. Define h : R
2 æ R to be the function h(x, y) = x + 7y2 ≠ 7x. Of

course, g does not equal h as a function on R
2. But what about their

restrictions to X? If (x, y) œ X, we know that y2 ≠ x = 0. Thus, if
(x, y) œ X, we have:

h(x, y) = x + 7y2 ≠ 7x = x + 7(y2 ≠ x) = x + 7 · 0 = x = g(x, y).

In other words, h|X = g|X .

3. Fix any polynomial p œ R[x, y]. Consider the function j = g+p·(y2≠x).
Then if (x, y) œ X, we have:

j(x, y) = g(x, y) + p(x, y)(y2 ≠ x) = g(x, y) + p(x, y) · 0 = g(x, y).
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9.5 Functions that restrict to zero (i.e., func-
tions that extend zero)

So fix an algebraic set X inside Rn. In general, it may be very hard to identify
every algebraic function on X. Here’s another (in general, di�cult) question
to ask: Can we identify all the polynomial function son R

n that restrict to 0
on X?

Example 9.5.1. Let X = {3} µ R be the set containing exactly one element
of R called 3. Can we say exactly what polynomials in one variable restrict
to the 0 function on X? Tautologically, the set of such polynomials is exactly
the set of polynomials that vanish at x = 3. For example, the set of functions
that vanish at x = 3 contains the following polynomials:

x ≠ 3, (x ≠ 3)2, x(x ≠ 3), (7 ≠ x + x2)(x ≠ 3)

and more.

Because this notion will be important to us, we give it some notation:

Notation 9.5.2. Let X µ R
n be an algebraic set. We let I(X) denote the

set of all polynomials g œ R[x1, . . . , xn] for which g|X = 0. In other words,
I(X) is the set of all polynomials g satisfying the following property:

x œ X =∆ g(x) = 0.

Remark 9.5.3. Put another way, I(X) is the set of all functions p œ
R[x1, . . . , xn] that get sent to zero under the restriction map R[x1, . . . , xn] æ
OX(X) (Remark 9.3.10).

As usual in math, if we cannot identify an answer on the nose, we can at
least try to identify some useful properties that an answer would satisfy.

Proposition 9.5.4. Let X µ R
n be an algebraic set. Then I(X) satisfies

the following properties:

1. If g, h œ I(X), then g + h œ I(X). (In other words, I(X) is closed
under addition.)

2. If g œ I(X) and p œ R[x1, . . . , xn], then gp œ I(X). (In other words,
I(X) is closed under scaling by elements of R[x1, . . . , xn].)
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Proof. (1) It su�ces to show that if g|X = h|X = 0, then (g + h)|X = 0.
Well, to see this, take any x œ X. Then (g + h)(x) = g(x) + h(x) = 0 + 0.
(The last equality is because both g and h equal 0 on X.) So we conclude
(g + h)(x) = 0, meaning g + h œ I(X).

(2) It su�ces to show that for all x œ X, we have (gp)(x) = 0. Well,
(gp)(x) = g(x)p(x) = 0 · p(x), where the last equality is by the assumption
that g œ I(X). Of course, for any value of p(x), we have that 0 · p(x) = 0, so
we conclude (gp)(x) = 0 for every x œ X. This shows gp œ I(X).

9.6 Ideals

In short, I(X) is a subset of the ring R[x1, . . . , xn] that is closed under addi-
tion and under scaling. And regardless of the algebraic set X, I(X) satisfies
these properties. Such subsets are so important that we give them a name:

Definition 9.6.1 (Ideals). Let R be a commutative ring. A subset I µ R is
called an ideal of R if:

1. I is non-empty.

2. For all x, y œ I, we have that x + y œ I.

3. For all x œ I and r œ R, we have that rx œ I.

Put another way, Proposition 9.5.4 says that—for any algebraic set X µ
R

n—the set I(X) is an ideal of R[x1, . . . , xn].

Remark 9.6.2. We thus see that every algebraic subset X µ R
n defines an

ideal I(X) µ R[x1, . . . , xn]. So one may ask a question: Does every ideal of
R[x1, . . . , xn] arise from an algebraic subset of Rn?

The answer turns out to be no, but this answer leads to a deep innovation.
Perhaps we should think of ideals not as not only coming from geometrically
significant things like algebraic sets, but we should explore a way in which
every ideal does define a geometrically significant object more general than
an algebraic set. This mode of thought gains us huge mileage in the field
of algebraic geometry, though we won’t be able to explore it much in this
course.
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9.7 Examples of proofs involving ideals
Let’s see some properties of ideals. I emphasize that the properties in the
following proposition are not part of the definition of “ideal,” but are conse-
quences of the definition of “ideal.”

Proposition 9.7.1. Let R be a commutative ring and let I µ R be an ideal.
Then the following hold:

(a) 0 œ I. (Ideals always contain the additive identity.)

(b) If 1 œ I, then I = R. (Ideals almost never contain the multiplicative
identity; when they do, they are equal to the ring itself.)

(c) If x œ I, then ≠x œ I. (Ideals are closed under additive inverses.)

Proof. (a) Because I is an ideal, it is non-empty. So fix x œ I. Because I is
closed under scaling, rx œ I for any r œ R. So choose r = 0. Then by
Proposition 2.4.4, rx = 0x = 0. This shows 0 œ I.

(b) By assumption, I µ R. So we must show that R µ I. Fix r œ R.
Because 1 œ I by assumption, we know that r ·1 œ I because I (being an
ideal) is closed under scaling by elements of R. But of course, r · 1 = r,
so this shows r œ I.

(c) Again because I is closed under scaling by elements of R, if x œ I, we
know that ≠1 · x œ I. By Proposition 2.4.5, we conclude ≠x œ I.

Proposition 9.7.2. Fix a commutative ring R and let I and J be ideals of
R. Then I fl J is an ideal of R.

Proof. We must show that I flJ satisfies the two defining properties of ideals.
(Closure under addition.) Suppose that x, y œ I fl J . Then x, y œ I, so

x+y œ I because I is an ideal. Likewise, x, y œ J by definition of intersection,
so x + y œ J because J is an ideal. As x + y is in I and in J , we conclude
x + y œ I fl J .

(Closure under scaling.) Suppose that x œ I fl J , and let r œ R. Well,

x œ I fl J =∆ x œ I =∆ rx œ I
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where the last implication is because I is an ideal. Likewise,

x œ I fl J =∆ x œ J =∆ rx œ J.

Thus rx is an element of both I and of J , showing rx œ I fl J .

9.8 Examples of ideals

9.8.1 The two “trivial” ideals
Let R be a commutative ring. Then the set I = {0} consisting only of the
additive identity is an ideal. This is obvious: 0 + 0 = 0 œ I, and for any
r œ R, we have r · 0 = 0. This choice of I is often called the zero ideal.

Likewise, the set I = R consisting of the entire ring is also an ideal. This
ideal rarely comes up, but it is an ideal that could be called a “trivial ideal.”
(The other thing that could be called the trivial ideal is the zero ideal.)

These two ideals only coincide if R is the zero ring—the ring consisting
of one element.

9.8.2 Ideals of Z

The ring of integers Z has very concrete ideals.
Notation 9.8.1. Fix any integer n œ Z. We let

nZ = {. . . , ≠2n, ≠n, 0, n, 2n, . . .}

denote the set of all integers obtained by multiplying n by some integer.
In other words, nZ is the set of all multiples (negative and positive) of n.
Sometimes, we will also write

(n)
instead of nZ.
Example 9.8.2. (a) 0Z = {0} is the zero ideal.

(b) 3Z = {. . . , ≠9, ≠6, ≠3, 0, 3, 6, 9, . . .}.

(c) 1Z = Z.

(d) ≠3Z = 3Z.

(e) 6Z = {. . . , ≠18, ≠12, ≠6, 0, 6, 12, 18, . . .}.
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9.8.3 Principle ideals
Notation 9.8.3. Let R be a commutative ring and fix an element f œ R.
We let

(f)

denote the smallest ideal of R containing f . We say that (f) is the ideal

generated by f .

It is not a priori obvious that such a “smallest” ideal exists, or what it
means to be “smallest.” Let’s make it precise:

Proposition 9.8.4. Let R be a commutative ring and fix an element f œ R.
Let I denote the set of all elements in R that can be factored by f . That is,
x œ I if and only if there exists some xÕ œ R for which x = fxÕ. Then

(a) I is an ideal, and I contains f .

(b) If J is any other ideal containing f , then I µ J . (This shows that I is
the smallest ideal containing f .) In other words, (f) is precisely the set
of all elements of R that can be factored by f .

(c) In fact, I is the intersection of all ideals containing f .

Proof. (a) Suppose that x and y are in I, so that x = fxÕ and y = fyÕ. Then
x + y = fxÕ + fyÕ = f(xÕ + yÕ), meaning that x + y is factored by f . This
shows x + y œ I. Now, if x œ I and r œ R, then xr = (fxÕ)r = f(xÕr),
showing that xr can also be factored by f . This shows I is an ideal.
Finally, note that f = f1, so f is factored by itself; this shows that
f œ I.

(b) We must show that if x œ I, then x œ J . Well, if x œ I, then we know
that x = fxÕ for some xÕ œ R. But J is an ideal, so if f œ J , then
fxÕ œ J .

(c) The previous proof shows that I is contained in the intersection of all
ideals having f as an element. So now we must show that the intersection
of all such ideals is contained in I—but this is trivial. After all, I is an
ideal containing f , so the intersection of I with anything else is a subset
of I.
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Definition 9.8.5. Let R be a commutative ring and I an ideal of R. We say
that I is a principal ideal if there exists an element f œ R for which I = (f).
Example 9.8.6. Let R = R[x, y], and choose a polynomial f . For example,
choose f(x, y) = y ≠ x2. Then the ideal generated by f is the set of all
polynomials divisible by f . In other words, (f) is the set of all polynomials
of the form pf where p is some polynomial.

Though it is not obvious, it turns out that not all ideals are principal.

9.8.4 Functions vanishing along a fixed set
Finally, let me just remind you that if X µ R

n, then the set of all functions
that vanish along X is an ideal. See Proposition 9.5.4. Though we will not
see a proof, very few ideals of the form I(X) are principal. For example, if
X µ R

2 consists of a single point, I(X) is not principal (though we do not
prove this fact).

9.9 Exercises
Exercise 9.9.1. Show that the polynomial given in Example 9.3.7 indeed
satisfies the property that p(ai) = ti.
Exercise 9.9.2. Here are two facts about the set of all integers that you
may have seen before: (1) The well-ordering principle: If A µ Z is a subset
consisting of only positive integers (meaning a œ A =∆ a > 0) then A
contains a least element (meaning an element a0 so that a œ A =∆ a0 Æ a).

(2) The Euclidean algorithm: If m and n are two integers, then you can
find integers a, b so that am+bn = gcd(m, n) where gcd(m, n) is the greatest
common divisor of m and n. (This implies in particular that gcd(m, n) Æ m
and gcd(m, n) Æ n.)

You may take the above two facts for granted. Doing so, prove that every

ideal of Z is a principal ideal.
Exercise 9.9.3. Let R be a commutative ring. Suppose that r, s, x are
elements of R for which rx = s. Prove that (s) µ (r).
Exercise 9.9.4. Let R be a commutative ring and fix r, s œ R. Show that
if (r) = (s), then there exists some x œ R satisfying the following properties:
(i) rx = s, and (ii) There exists some y œ R so that xy = 1.
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9.10 Extra credit
(a) Let X µ R

n be a finite set. Prove that X is algebraic. (You may have
done this in a previous exercise.)

(b) Let f : X æ R be any function. Prove that f is algebraic.


