
Lecture 10

Quotient rings and ring
isomorphisms

10.1 Goals
1. Recall the definitions of equivalence relation, equivalence class, and

quotient sets

2. Understand why the set of algebraic functions on an algebraic set X is
naturally in bijection with a quotient set

3. Become familiar with some common quotient rings

4. See how to make ring homomorphisms out of quotient rings

5. See the notion of ring isomorphism

10.2 The set of algebraic functions on X

Fix an algebraic set X µ R. We have seen that a given algebraic function
f : X æ R can have many di�erent polynomial extensions g : Rn æ R. For
example, if f is the zero function, we have seen that the set of extensions to
R

n forms an ideal of R[x1, . . . , xn].
Here is a beautiful insight: The ring of all algebraic functions on X, then,

is like the set of all polynomial functions on R
n, but where we consider (or

declare) two polynomials g and h to be “equivalent” when g|X = h|X .
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118 LECTURE 10. QUOTIENT RINGS AND RING ISOMORPHISMS

More precisely, there seems to be a bijection between the set

{Algebraic functions on X}

and the set

{Polynomial functions on R
n, where we pretend “g = h” if g|X = h|X}

(10.2.0.1)
Put yet another way: From the perspective of X, a polynomial on R

n is only
as good as its restriction to X, so X will treat any two polynomials the same
so long as they both agree along X.

10.2.1 Equivalence relations
The issue now is to try to make the vague description (10.2.0.1) precise.
What does it mean to “declare” or to “pretend” that two things that are not
equal, to be equal? This brings us to the notion of quotient sets, which are
most naturally described by using the auxiliary ideas of equivalence relations
and equivalence classes.

Remark 10.2.1. It is a good sign in math if we have a feeling about what
something ought to be, but we don’t know how to express our feelings pre-
cisely. Being able to give a precise description of the thing we’re feeling is
the hardest part of math; and if it’s hard, it’s typically worth doing. (This
way, when you need to use the feeling again in the future, you know exactly

how to articulate it mathematically. It’s best not to put things like this o�.)
This is one sense in which mathematics is like poetry. They’re both about
finding the truest ways to express something that seems to exist in a realm
outside language.

So let’s recall some ideas you may have seen in another course:

Definition 10.2.2. Fix a set R. An equivalence relation on R is a subset
E µ R ◊ R, satisfying the following properties:

1. (Reflexivity.) For every g œ R, (g, g) œ E.

2. (Symmetry.) If (g, h) œ E then (h, g) œ E.

3. (Transitivity.) If (g, h) œ E and (h, j) œ E, then (g, j) œ E.
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Notation 10.2.3. If E µ R ◊ R is an equivalence relation on R, we will
write the notation

g ≥ h

to mean that (g, h) œ E. Using this notation, the above properties of an
equivalence relation may be written as

1. (Reflexivity.) For every g œ R, g ≥ g.

2. (Symmetry.) If g ≥ h then h ≥ g.

3. (Transitivity.) If g ≥ h and h ≥ j, then g ≥ j.

Example 10.2.4. Let R = R[x, y] be the set of polynomials in two variables,
and fix an algebraic set X µ R

2. Then we declare an equivalence relation on
R by declaring:

g ≥ h ≈∆ g|X = h|X .

(Or, in other words, if and only if (g ≠ h)|X = 0.) This is fun! Note that
this relation describes exactly the way in which we wanted to declare two
polynomials to be “the same” from the perspective of X (10.2.0.1).

And yes, this is indeed an equivalence relation:

1. (Reflexivity.) Of course, if g is any polynomial, then g|X = g|X . So
g ≥ g.

2. (Symmetry.) Suppose g and h are two polynomials for which g ≥ h, so
g|X = h|X . Then, of course, h|X = g|X (because equality of functions
is symmetric), so h ≥ g as well.

3. (Transitivity.) If g ≥ h and h ≥ j, then we see that g|X = h|X and
h|X = j|X . Then, because equalities of functions is transitive, we see
that g|X = j|X . In other words, g ≥ j.

Example 10.2.5 (Informal). This is probably the most useful non-mathematical
example. Let R be some collection of people. Then we can declare E to be
the set of pairs of people (g, h) for which person g is related to person h.
Then of course, every person is related to themselves, if g is related to h,
then h is related to g, and finally, if g is related to h and h is related to j,
then of course g is related to j.

Thus the word relation in “equivalence relation” has a di�erent, somewhat
literal, intuition about it.
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10.2.2 Equivalence classes
“Equivalence relation” is a pretty good name for the above idea—it turns
out an equivalence relation is the right amount of sca�olding one needs to
create a new set for which if g ≥ h, then in fact, “g becomes equal to h”
in the new set. We begin the construction of this new set by describing its
elements: Equivalence classes.

Definition 10.2.6. Let R be a set and E µ R◊R an equivalence relation on
R. Then an equivalence class of E is a subset C µ R satisfying the following
three properties:

1. C is non-empty. (So there is at least one element g œ R that is in C.)

2. C is closed under the relation E. (This means that if g œ C, and if
h ≥ g, then h œ C.)

3. Every element of C is related. (This means that if g, h œ C, then
g ≥ h.)

Example 10.2.7. In the setting of Example 10.2.5, if R is a collection of
people, and E is the “related” equivalence relation, then an equivalence class
of R is precisely one family of people: A family has at least one person in it,
every person related to a family member is obviously a family member, and
if two people are in the same family, then they are related.

(Of course, notion of “family” and “related” can be given many di�erent
meanings—I personally do not take family/related to involve blood lines or
any concrete genetic link, but you should construe these terms in a way that
makes this example valid. This example is being used only to build intuition.)

Example 10.2.8. Let R = R[x, y] be the set of polynomials in two variables,
and fix an algebraic set X µ R

2. Then we declare an equivalence relation on
R by declaring:

g ≥ h ≈∆ g|X = h|X .

We saw in Example 10.2.4 that this is indeed an equivalence relation.
Then what is an equivalence class in this example? An equivalence class

C is some collection of polynomial functions C µ R[x, y], satisfying the
following properties:

1. There is at least one polynomial function g œ C.
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2. If g œ C, and if some polynomial function h œ R[x, y] satisfies h|X =
g|X , then h is also in C.

3. Finally, if two functions g and h are both in C, then their restrictions
to X agree.

In other words, an equivalence class is precisely a collection of polynomials
on R

2 that take on the exact same values on X.
Using the language from our familial example, it’s as though we declare

two polynomials to be in the same family if, from the perspective of X, they
define the same function.

Notation 10.2.9. Let R be a set and E µ R ◊ R an equivalence relation.
If x œ R, then we let

[x]
denote the equivalence class containing x.

10.2.3 Quotient sets
Definition 10.2.10. Let R be a set and E µ R ◊ R an equivalence relation
on R. Then the quotient of R by E, also known as the quotient set, is the
set of all equivalence classes. We write this set as

R/≥.

(We will see some other notation for it later in the course.)

Remark 10.2.11. Note that R/≥ is a set of sets—an element of R/≥ is a
set itself.

If you’ve ever heard that a set is like a bag of things (where the contents of
the bag are the elements of the set) then a set of sets is like a bag containing
bags. That’s how you can think of R/≥ if you like.

Example 10.2.12. Let’s follow Example 10.2.5, so that R is a set of people
and E µ R ◊ R is the equivalence relation where g ≥ h exactly when g is
related to h. Then R/≥ is the set of families.

Example 10.2.13. As a further example, suppose that R is the set of five
names as follows:

{John Dille, Ralph Dille, John Lew, Erica Lew, Peter Lew.}
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Let’s declare a relation E for which a person is related to another if and only
if they have the same last name. Then the set R/≥ would consist of two
elements—the Dilles and the Lews.

Remark 10.2.14. By definition, [x] œ R/≥. (See Notation ??.)
We note that x ≥ y if and only if

[x] = [y].

So [x] and [y] are the same element of R/≥. The lesson is that the notation
[x] is rather biased—it privileges the representative x of the equivalence class,
even though there may be many other possible representatives.

10.2.4 The quotient map
Definition 10.2.15 (Quotient map). Let R be a set and E µ R ◊ R an
equivalence relation. Then there is a function

R æ R/≥, g ‘æ [g]

sending an element x œ R to its equivalence class. This is called the quotient

map.

10.2.5 The ring of algebraic functions on X as a quo-
tient set

The proceeding sections were a crash course in equivalence relations. Our
main use of equivalence relations is the following:

Proposition 10.2.16. Let X µ R
n be an algebraic set. Then the set of all

algebraic functions on X is in bijection with the quotient set

R[x1, . . . , xn]/≥

where ≥ is the equivalence relation declaring two polynomials g and h to be
equivalent if (g ≠ h)|X is zero.

The above proposition says that we can think of the set of all algebraic
functions on X µ R

n as a quotient of the set of all polynomial functions on
R

n. We will defer its proof until we state a more useful version in Proposi-
tion 10.6.2.
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10.3 Using ideals to define quotient rings
So, we have seen that the set of all algebraic functions on an algebraic set
X µ R

n can be written as a quotient of the polynomial ring R[x1, . . . , xn].
But we know more: The set of algebraic functions is itself a commutative
ring (because we can add and multiply functions). There are two special
things going on at once: We witness a quotient set, and a ring structure on
that quotient set. It turns out that there is a general setting under which
quotient sets of rings can be given ring structures—when we “mod out by an
ideal.”
Notation 10.3.1. Let R be a commutative ring and I µ R an ideal (Defi-
nition 9.6.1). Then the set

R/I

is defined to be the quotient set of R with respect to the following equivalence
relation:

r ≥ s ≈∆ there exists some k œ I for which r = k + s.

Equivalently,
r ≥ s ≈∆ r ≠ s œ I.

Example 10.3.2. Let’s take the example of R = R[x1, . . . , xn], and I = I(X)
for some algebraic subset X µ R

n. Then the equivalence relation defining
R/I says that we identify two functions g, h œ R[x1, . . . , xn] precisely when
g = k+h for some k œ I(X). In other words, g ≥ h precisely when g≠h = k,
where k is a function that vanishes on X. Equivalently, g ≥ h precisely when
they restrict to the same function on X.

So in this example that we care about, R/I is precisely the set of algebraic
functions on X (Proposition 10.2.16).

The following theorem is one explanation—without using the notion of
“functions”—that we witness a ring structure on this quotient set.
Theorem 10.3.3 (R/I is a ring). Let R be a commutative ring and I an
ideal of R. Then the operations

[r] + [s] := [r + s]

and
[r] · [s] := [r · s]

are well-defined, and define a ring structure on R/I.
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Remark 10.3.4 (What it means to be well-defined). Let’s remember what
it means for something to be “well-defined.” This is a term that is often used
when is trying to define a function h : X/≥ æ Y where the domain is a
quotient set.

Typically, when people define functions from X/≥ to some codomain,
they will write a formula like h([x]) = . . .. In particular, while h is supposed
to depend only on elements of X/≥ (i.e., on equivalence classes) often, the
formula/description of h will involve elements of X instead (i.e., represen-
tatives of equivalence classes). As we have discussed, an equivalence class
[x] œ X/≥ may have many representatives aside from x. So if one writes a
formula for h([x]) that depends on the particular representative x, then one
must verify that h([x]) = h([y]) whenever [x] = [y] (that is, whenever y is
related to x).
Proof. Suppose that r ≥ r

Õ and s ≥ s
Õ. We must show that [r+s] = [rÕ+s

Õ]—
that is, we must show that r +s ≥ r

Õ +s
Õ. To do so, observe that r ≥ r

Õ ≈∆
r ≠ r

Õ œ I. Likewise, we see s≠s
Õ œ I. Then (r ≠ r

Õ)+(s≠s
Õ) is a sum of two

elements in I. Because I is an ideal, we conclude that (r ≠ r
Õ) + (s ≠ s

Õ) œ I.
Rearranging this sum, we see that

(r + s) ≠ (rÕ + s
Õ) œ I

showing that indeed [r + s] = [rÕ + s
Õ].

Now let us show that multiplication is also well-defined. We note that

rs ≠ r
Õ
s

Õ = rs ≠ rs
Õ + rs

Õ ≠ r
Õ
s

Õ = r(s ≠ s
Õ) + (r ≠ r

Õ)sÕ
.

Because s ≥ s
Õ, we know that s ≠ s

Õ œ I; and because I is an ideal (hence
closed under scaling) we observe that r(s ≠ s

Õ) œ I as well. Similar reasoning
shows that (r ≠ r

Õ)sÕ œ I. Again using that I is an ideal (hence closed under
addition) we conclude that r(s≠s

Õ)+(r ≠r
Õ)sÕ œ I. This shows rs≠r

Õ
s

Õ œ I,
so that rs ≥ r

Õ
s

Õ. This proves that [rs] = [rÕ
s

Õ], hence that the multiplication
operation [r][s] = [rrs] is well-defined.

We leave the verification of the ring axioms to the reader. For the record,
we will point out that [1] is the multiplicative identity, [0] is the additive
identity, and [≠x] = ≠[x].

10.4 Summary of algebraic geometry so far
Let us recap what all of this algebra is for.
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First, we saw that every algebraic subset X µ R
n defines an ideal I(X) µ

R[x1, . . . , xn]. Concretely, every X gives an ideal called “the set of all poly-
nomials that vanish along X.”

Then, we just saw an even stronger connection: “The set of all algebraic
functions on X” is in bijection with “the quotient of R[x1, . . . , xn] by I(X).”

Thus, the idea of “ideal” and of “quotient ring” were instrumental in
elevating the first correspondence to the second—where we not only have
some vague back-and-forth between sets and ideals, but where this back-
and-forth allows us to completely recover all algebraic functions on algebraic
subsets.

As it turns out, there is a deep philosophy in math: “Understanding all
functions on a space” is the same thing as understanding the space itself. So,
while a deep exploration of this requires coursework typically done in a Ph.D.
program, let me just tease your curiosities and say that we have reduced the
study of algebraic sets to the study of ideals and quotients by ideals.

As a spectacular application of the idea that “understanding functions
on a space” is enough to understand a space, it turns out that if two rings

are equivalent, then the spaces they describe are equivalent. The technical
statement is that if X and Y have isomorphic rings of algebraic functions,
then they are isomorphic as algebraic sets, meaning that their geometries are
indistinguishable from the perspective of polynomial functions. We will see
the notion of ring isomorphism soon enough.

10.5 Z/nZ

Matrix rings and polynomial rings are interesting. The ring Z/nZ is inter-
esting in a completely di�erent way.

Proposition 10.5.1. Let n be any integer, and let nZ µ Z be the ideal of
all integers divisible by n. Then the quotient ring

Z/nZ

is a ring with n elements. Moreover, addition and multiplication are com-
puted in this ring using modular arithmetic:

[a] + [b] = [a + b modulo n], [a][b] = [ab modulo n],
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Proof. Let a be an integer. Then, by the division algorithm, we know that
a may be written as

a = a
Õ
n + r (10.5.0.1)

where a
Õ is an integer and r is some integer between 0 and n ≠ 1, inclusive.

Indeed, r is the remainder one obtains when computing the division a ÷ n.
Moreover, by demanding that 0 Æ r Æ n ≠ 1, the number a

Õ is unique given
a. (For example, if n = 7, we have:

13 = 1 · 7 + 6
52 = 7 · 7 + 3
14 = 2 · 7 + 0

≠36 = ≠6 · 7 + 6
≠1 = ≠1 · 7 + 6

and so forth.) By definition of the ideal nZ, we see then that for any integer
a, there is some integer r with 0 Æ r Æ n ≠ 1 for which a ≠ r œ nZ. In
other words, any element of Z is related (by the equivalence relation defined
by nZ) to an integer between 0 and n-1. On the other hand, if two distinct
numbers are between 0 and n-1, their di�erence cannot be a multiple of n

for size reasons; so the map

Z/nZ æ {0, 1, . . . , n ≠ 1}, [a] ‘æ r

(where r is the number appearing in (10.5.0.1)) gives a bijection between
Z/nZ and the set {0, . . . , n ≠ 1}. (An inverse is given by r ‘æ [r].) This
proves the first claim.

By definition of addition in a quotient ring, we know that [a]+[b] = [a+b].
On the other hand, by the above bijection, we know that [a + b] is equivalent
to the remainder r one obtains when computing (a + b) ÷ n; this is the
definition of a + b modulo r, so the claim follows.

Likewise for the claim about multiplication.

Example 10.5.2. Let n = 5 and consider the ring Z/5Z. Then, as usual,
let 1 denote the multiplicative identity. (This is given by the element [1],
confusingly enough.) Likewise, we let 0 denote the additive identity (given
by [0]). Then you can check that

1 + 1 + 1 + 1 + 1 = 0.
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Isn’t that strange? From this, you can conclude that ≠1 = 4, and that
1 = ≠4.

Likewise, in Z/2Z, we have the wonderful formula 1 + 1 = 0. In other
words, 1 = ≠1.

If you have not seen this before, this is probably the first time in your
life that you have encountered a setting in which “add 1 to itself a bunch
of times” is an operation that can result in 0. Indeed, you have to add 1 to
itself the correct number of times to output 0. (For example, in Z/2Z, you
must add an even number of 1’s to obtain 0.)

Remark 10.5.3. By extending the analogies from Section 10.4, one might
wonder if there is some “geometry” to Z, and the fact that Z has ideals.

Amazingly, there is indeed a way in which one can think of the ring Z

as a ring of functions on some mysterious space. This space goes by the
uninformative name of Spec(Z), otherwise known as the Zariski spectrum of
Z. Moreover, there is a way to think of prime numbers as “points” of this
space, and of arbitrary ideals as unions of points in this space.

In truth, much of this thinking is purely by analogy, but the fact that
we can begin to think of integers as a ring of functions on some space has
guided a huge amount of modern number theory. (How powerful would it
be if we don’t only think of Z as a bunch of numbers, but as encoding some
geometry?)

10.6 Homomorphisms out of quotient rings
For various reasons, we’ll want to construct ring homomorphisms. And it
turns out that quotient rings have a very nice “universal property”–i.e., a
very nice way to construction functions.

Theorem 10.6.1 (Universal property of quotient rings). Suppose that f :
R æ S is a ring homomorphism. Then the formula

f
Õ([r]) = f(r)

defines a ring homomorphism f
Õ : R/I æ S if and only if x œ I =∆ f(x) =

0.
More is true: The set of ring homomoprhisms from R/I to S is in bijection

with the set of ring homomorphisms R æ S sending elements of I to zero.
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Fix an algebraic set X µ R
n. Recall that, by definition, I(X) is the set

of all functions in R[x1, . . . , xn] which are sent to 0 under the restriction map
(Remark 9.5.3). Thus, we have the following, more useful, reformulation of
Proposition 10.2.16:

Proposition 10.6.2. The restriction map

R[x1, . . . , xn] æ OX(X)

induces a bijection
R[x1, . . . , xn]/I æ OX(X)

Remark 10.6.3. Why do I say that Proposition 10.6.2 is more useful than
Proposition 10.2.16? It is because Proposition 10.6.2 actually tells us where
the bijection comes from. Indeed, it is far more useful to know what bijections

we may construct between two sets, rather than just the fact that two sets
may be abstractly in bijection.

10.7 Ring isomorphisms
In general, “isomorphism” is a term that now refers to a function that exhibit
when two things are equivalent in an appropriate sense. For sets, a set
isomorphism is the same thing as a bijection. This is because for sets, the
most important property is just the size of a set, and bijections exhibit a way
in which two sets have the same size.

For rings, we have the following:

Definition 10.7.1. Let R and S be rings. A ring isomorphism is a function
R æ S which is (i) a ring homomorphism, and (ii) a bijection.

Remark 10.7.2. Let f : R æ S be a ring isomorphism. Because f is a
bijection, f admits an inverse g : S æ R. One can prove that g is also a ring
isomorphism. (This shows that the relation R ≥ S of rings being isomorphic
is symmetric.)

Further, suppose f : R æ S and h : S æ T are two ring isomorphisms.
Then h ¶ f is also a ring isomorphism. (This shows that the relation of rings
being isomorphic is transitive.)
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10.7.1 A useful criterion for when a ring homomor-
phism is an injection

We’ll practice showing that certain ring homomorphisms are isomorphisms.
For this, we’ll want a tool for showing that ring homomorphisms are injec-
tions.

Proposition 10.7.3. Let f : R æ S be a ring homomorphism. Then f is
an injection if and only if 0 œ R is the only element sent to 0 œ S under f .

Proof. Assume f is an injection. Then if f(x) and f(y) both equal 0, we
conclude x = y by definition of injection.

In the other direction: Suppose that whenever f(x) = 0, then x = 0.
We must show that f is an injection. So suppose f(x) = f(y)—meaning
f(x) ≠ f(y) = 0 œ S. Because f is a ring homomorphism, we conclude that
f(x ≠ y) = 0. By assumption, we conclude that x ≠ y = 0 œ R. Therefore
x = y. This shows f is an injection.

10.8 Exercises
Exercise 10.8.1. An ideal I µ R is called prime if: When xy œ I, at least
one of x or y is in I.

Let n be a positive integer. Show that the ideal nZ µ Z is prime if and
only if n is a prime number.

Exercise 10.8.2. Compute the following in Z/22Z. Write your answer in
the form [r], where r is a number between 0 and 21, inclusive.

(a) [7] + [56].

(b) [56] + [56].

(c) [2] · [56].

(d) [7] · [56].

(e) [56]4.

Exercise 10.8.3. Compute the following in Z/5Z. Write your answer in the
form [r], where r is a number between 0 and 4, inclusive.
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(a) [1] · [1].

(b) [2] · [2].

(c) [56]4.

(d) [≠1] + [1].

(e) [2] + [3].

(f) [≠3] + [≠2].

Exercise 10.8.4. Answer the following questions about the ring Z/5Z:

(a) Does ≠1 (that is, the additive inverse of the multiplicative identity) have
a square root? In other words, is there an element x of Z/7Z so that
x

2 = ≠1?

(b) Does 2 have a square root?

(c) Suppose that x œ Z/7Z is non-zero. Does x have a multiplicative inverse?

Exercise 10.8.5. A commutative ring is called a field if 0 ”= 1, and if every
non-zero element admits a multiplicative inverse.

(a) Show that every field is an integral domain.

(b) Let p be a prime number. Show that Z/pZ is a field. (Hint: Euclidean
algorithm—see Exercise 9.9.2.)

(c) Let n be an integer for which Z/nZ is an integral domain. (Defini-
tion 7.3.23.) Prove that n must be prime, and in particular, Z/nZ must
be a field.
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10.9 Extra Credit
Definition 10.9.1. Let R and S be commutative rings. Then the direct

product of R and S is the set R ◊ S with the following addition and multi-
plication:

(r, s) + (rÕ
, s

Õ) = (r + r
Õ
, s + s

Õ), (r, s) · (rÕ
, s

Õ) = (rr
Õ
, ss

Õ).

You do not need to prove that R◊S is a ring, but note that the multiplicative
identity is the element (1R, 1S).

Suppose that X µ R
n and Y µ R

n are disjoint subsets, meaning that
X fl Y = ÿ. We let X

‡
Y denote their union. Exhibit a bijection

OX
‡

Y (X
·

Y ) ≥= OX(X) ◊ OY (Y ).

Remark 10.9.2. This is part of building up our dictionary for passing be-
tween geometry (of algebraic subsets X µ R

n) and algebra:

Algebraic subsets X ¡ Rings OX(X)
Disjoint unions of sets ¡ Direct products of rings

Subsets ¡ Quotient rings


