Notes
$$2/24/28$$

 $nZ = \{ n \neq 1 \neq eZ \} = \{n)Z$
 $= \{ 0, n, 2n, \dots \}$ Jenna
 $D_{nZ} = Z_{nZ}$ Stephenie
 $Z_{nZ} = Z_{nZ}$ Einberly
 $|Z_{nZ}| = \# e_{0} \text{ elements} = n$
 $Z_{II} = \{ \text{ left coucles} \}$ I an ideal
 $= \{ a \neq I | a \notin I \}$
 $a \neq I = \{ a \neq u | d \notin I \} \text{ esc}$ left cool
 $I = SZ = \{ 0, 5, 10, \dots, 1 \}$
 $qq + I = \{ qq, 10q, 10q, \dots \}$
 $qq + I = \{ qq, 10q, 10q, \dots \}$
 $Fact Z$ couch are either agual or dry out
 $Ut = a + I_{2} \text{ best } I$ be 2 couch
Suppose these have an element in comman-
 $C \in a + I_{2} \}$ $c = b + I$
 $Claim: Then a + I = b + I$
 $a = b + v = w$

$$P_{ad} 1 = 4 + I = 4 + I$$

$$P_{ad} 1 = 4 + I$$

$$P_{ad} 2 = 1 + I$$

$$P_{ad} 2 = I$$

$$P_$$

(i) Ring Lonomorphic

$$R_{j}S = f: R \rightarrow S$$

 $x = ring homomorphics if
 $f(r+s) = f(r) + f(s)$
 $f(r \cdot s) = f(r) \cdot f(s)$
 $f(1p) = 1s$
 $R = Z_{ln}Z = O_{R} = O + nZ = nZ = J$
 $I_{R} = 1 + nZ$$

$$(a+I)+(b+I)=(a+I)+I$$

 $(a+I)(b+I)=(a+I)+I$
 $I = a + ideal in R = connected rec $rrr$$

(1) (losel under +
(2) Closed under mult.by
elemants for R
(3) If
$$a \neq I$$
 and $r \in I$ then
 $ar \in I$ and $r \in I$ then
 $ar \in I$ and $r \in I$ then
 $ar \in I$ and $r \in I$
($lain^{1}$ Multipliedies of cosols is
 $well - definedie
What does the mone?
Means If $a + I = a' + I$
 $and h + I = b' + I$
 $b \in b + I$
 $b = b + R$
 $b$$

Suppose ato and 2to wis a ->= ite. slow ab =0 Since france Jare Duity f(a')=aJ J'ER with Rul F(1)=P

f(a'b') = f(a') - f(b')So since from H ONOrnorphe u

$$= 0.b$$

$$= 0$$

$$= 0$$

$$f(0) = 0$$

Lemma If
$$f \not B a right here morphon
f: $\mathcal{R} \rightarrow \mathcal{I}$
that $f(o) = O$
 $0 + O = O$
 $F(o + o) = f(o)$
 $f(o) + f(o) = f(o)$
 $(f(o) + f(b)) - f(o) = f(o)$
 $f(o) - f(o) = f(o)$
 $f(o) = O$$$

$$f(a'b') = f(a)$$

$$f(a'b') = 0 \quad \text{entre } f(a \mid b \mid a'b' = 0 \quad \text{entre } f(a \mid b \mid a'b \mid$$

$$(Q = \xi \text{ rationds}) \quad \text{freld}$$

$$(\frac{a}{b})(\frac{b}{a}) = 1 \quad a \neq 0$$

$$Z_{p} \quad p \neq p^{n \text{rad}}.$$

 $a \longrightarrow f(a)$ $\downarrow \longrightarrow w$ Fras. w = 1r Sive f is a honomorphie $f(1_{p}) = \int_{S}$ f(ab) = f(a)f(b) = f(ab, w = b)f(ab) = f(1, a)f 15 1-1. i ab=1P So a is a wait to R, st a hab an thread or R.