
Lecture 12

Computations, and polynomials
over fields

12.1 Z/nZ

Fix an integer n. Let’s dive a bit deeper into Z/nZ.

12.1.1 Clocks

As you know, Z/nZ is defined as a quotient ring. Writing [i] for the equiva-
lence class of i œ Z, we have seen that Z/nZ consists of n elements:

[0], [1], . . . , [n ≠ 1].

Explicitly, the equivalence class [i] is a set consisting of elements as follows:

[i] = {. . . , i ≠ 3n, i ≠ 2n, i ≠ n, i, i + n, i + 2n, i + 3n, . . .}.

We see a bijection between the set Z/nZ and the set {0, 1, . . . , n ≠ 1} as
follows:

{0, 1, . . . , n ≠ 1} æ Z/nZ i ‘æ [i].
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136LECTURE 12. COMPUTATIONS, AND POLYNOMIALS OVER FIELDS

Using this bijection, we can also think about Z/nZ’s elements as consisting
of hours on an n-hour clock. Here are some examples for various n:

0 1
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4
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10
11

n=12
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n=5

0
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8

n=9

You are probably most familiar with the example of n = 12. If it is 8 o’clock
now, then 9 hours from now, it will be 5 o’clock. This is reflected in the
following equation taking place in Z/12Z:

[8] + [9] = [5] œ Z/12Z.

If instead we were to use a nine-hour clock, then the above computation
would be

[8] + [9] = [8] œ Z/9Z.

Multiplication has a similar interpretation. Let’s say again that you’re on a
twelve-hour clock (the kind we’re used to). If you begin at zero o-clock, and
move 8 times in 2-hour increments, you move a total of 16 hours, meaning
you end up at 4 o’clock. This would be written

[8] ◊ [2] = [16] = [4] œ Z/12Z.

If we were on a nine-hour clock, we would find

[8] ◊ [2] = [16] = [7] œ Z/9Z.

12.1.2 Addition tables
It’s not terribly exciting, but we can organize the values of addition into
tables. A number in the a column and the b row is the value of a + b.
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In the tables below, we are using the bijection from before, so 3 really
represents the element [3] in Z/nZ. They are addition tables for n = 2, 4, 5:

+ 0 1
0 0 1
1 1 0

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

You should check them for their accuracy.
The diagonal entries represent elements of the form x + x, or what we

would write as 2x. In Z/4Z, only the elements 0 and 2 appear as x + x. In
Z/5Z, every element appears along the diagonal. This means that for any
a œ Z/5Z, the equation 2x = a can be solved in Z/5Z.

12.1.3 Multiplication tables
We can likewise create multiplication tables. Here, the entry in row b and
column a is the element ab in Z/nZ. Here are multiplication tables for
n = 2, 4, 5:

+ 0 1
0 0 0
1 0 1

+ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

+ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

The diagonal entries represent the square numbers in your ring. For example,
in Z/4Z, the only square numbers are 0 and 1. We have interesting equations
like 22 = 0 and 32 = 1.

In Z/5Z, we see that the only square numbers are 0, 1, and 4.
You can also check whether an element a admits a multiplicative inverse

by seeing if there is a 1 in the row (or column) labeled by a. For example, for
n = 4, we see that the 3 row has a 1 in it, so 3 has a multiplicative inverse.
In fact, 3 is its own inverse, as 3 ◊ 3 = 1 in Z/4Z.

In Z/5Z, every non-zero element has a multiplicative inverse. We can
read from the table that 2 ◊ 3 = 1 and 4 ◊ 4 = 1 (so 4 is its own inverse).
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Remark 12.1.1. Note that 1 + (n ≠ 1) = 0 in Z/nZ, so the element (n ≠ 1)
(also known as [n ≠ 1]) is the additive inverse to 1. In other words, one
can also express n ≠ 1 as simply ≠1. Then, as you’ve proven in a previous
exercise, (≠1)2 = 1, so n≠1 is always its own multiplicative inverse in Z/nZ.

12.2 Dividing polynomials
Not everybody learns about dividing polynomials, so I’d like to review it.

First, what do I mean by polynomial division? Well, recall that in division
of whole numbers, we have the following result:

Proposition 12.2.1. Let a and b be positive integers. Then there exists
unique positive integers q, r so that

a = qb + r

and for which 0 Æ r < b. Moreover, q and r are unique. (So if a = qÕb + rÕ

with rÕ < b, then we must have that q = qÕ and r = rÕ.)

We often say that r is the remainder of dividing a by b.

Example 12.2.2. 103 = 14◊7+5, so 103 divided by 7 is 14 with remainder
5. In this case, a = 103, b = 7 and the quotient q = 14 with remainder r = 5.

Incredibly important is the idea that the remainder is something with
some bound on its size: r is between 0 and b ≠ 1, inclusive.

It’s harder to say what the “size” of a polynomial is, but we’ve seen
the utility of an invariant called “degree” of a polynomial. The following
proposition shows that degree does, in many ways, behave like size:

Theorem 12.2.3. Let R be a field, and fix two polynomials a, b œ R[x].
Then there exist polynomials q, r œ R[x] for which

a = qb + r

and where deg(r) < deg(b). Moreover, q and r are unique. (So if a = qÕb + rÕ

with deg rÕ < deg b, then we must have that q = qÕ and r = rÕ.)

In other words, we can always try to divide a polynomial a(x) by another
polynomial b(x), and even if b doesn’t “fit” perfectly into a, we can guarantee
a remainder whose degree is strictly smaller than the degree of b.
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Remark 12.2.4. The assumption that R is a field is very important. So
far, we have only seen three examples of fields: Q,R, and C. It turns out
there are many others, such as Z/5Z. So the theorem above applies for many
choices of R.

Remark 12.2.5. However, you have seen that R[x] is never a field (Ex-
ercise 7.5.6). In particular, the theorem does not guarantee an analogous
division algorithm in R[x][y] = R[x, y] with as nice a notion of remainder.

12.2.1 Division in fields
Recall that a field F is a commutative ring in which any non-zero element
has a multiplicative inverse. That is, for every x œ F , there is some y so that
xy = yx = 1.

It will not betray your intuition to write y as x≠1, or as 1
x . Here are some

examples justifying this:

Example 12.2.6. If F = Q, then the multiplicative inverse of 5 is the
rational number 1

5 .
Likewise, if F = R, then the multiplicative inverse of fi is the real number

1
fi .

Notation 12.2.7. Let F be a field, and let b be a non-zero element of F .
Then we write

a

b
to mean the element obtained by multiplying a with the multiplicative inverse
of b.

We will also write
b≠1 and 1

b
to denote the multiplicative inverse to b.

Example 12.2.8. This is consistent with the usual notation for rational
numbers:

3
5 = 3 ◊ 1

5 .

Remark 12.2.9. The intuition I want you to build is the following: a field

is a ring in which you can divide (by non-zero elements, and always without
“remainders”).
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Example 12.2.10. Let F be a field, let a, b œ F with b ”= 0, and let c be
the multiplicative inverse to b. Then

a

b
◊ b = (a ◊ c) ◊ b = a ◊ (c ◊ b) = a ◊ 1 = a.

In other words, a
b ◊ b = a, as you would expect from fraction notation.

12.2.2 Long division for polynomials
The proof of Theorem 12.2.3 will pass through an algorithm for dividing
polynomials, which we’ll call long division in analogy with usual division of
numbers.

Let’s first understand by example. We’ll carry out the division

(9x4 ≠ 3x3 + x2 ≠ 10x + 4) ÷ (2x2 + 3).

As usual, let’s start writing the usual division set-up:

2x2 + 3))9x4 ≠ 3x3 + x2 ≠ 10x + 4

Division step. we focus only on the highest order terms of both poly-
nomials involved: 2x2 and 9x4, in our case. And we ask, can we divide 9x4

by 2x2? The answer is yes: 9
2x2 is the quotient. You can check

9
2x2 · 2x2 = 9x4.

So we record this quotient right above the highest-order term of the dividend:

9
2x2

x2 + 3)) 9x4 ≠ 3x3 + x2 ≠ 10x + 4

Remark 12.2.11. Notice that at this stage, it was important that we could
divide the coe�cient 9 by the coe�cient 2. In other words, we are using the
fact that our coe�cients take values in a field. See Remark 12.2.9.

In fact, this division step (and its repetitions later on) is the only place
where we use that the base ring is a field.
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Multiplication step. Now we multiply this term, 9
2x2, with the divisor,

and write the result below the dividend in preparation for subtraction:

9
2x2

x2 + 3)) 9x4 ≠ 3x3 + x2 ≠ 10x + 4
9x4 + 0 + 27

2 x2

Note that as we write, we are lining up terms by degree.
Subtraction step. Just as with usual division of numbers, we now

subtract:
9
2x2

x2 + 3)) 9x4 ≠ 3x3 + x2 ≠ 10x + 4
9x4 + 0 + 27

2 x2

≠ 3x3 + (≠25
2 )x2

Now we repeat the process.
Division again. Again, focusing only the highest-degree term ≠3x3 of

the new polynomial and the highest-degree term x2 of the divisor, we see
that ≠3x is the quotient:

(≠3x) · x2 = ≠3x3.

And we place ≠3x atop the long division bar:

9
2x2 ≠ 3x

x2 + 3)) 9x4 ≠ 3x3 + x2 ≠ 10x + 4
9x4 + 0 + 27

2 x2

≠ 3x3 + (≠25
2 )x2

Multiplication again. Now we multiply ≠3x by the divisor, and place
the result in a position ready for subtraction:

9
2x2 ≠ 3x

x2 + 3)) 9x4 ≠ 3x3 + x2 ≠ 10x + 4
9x4 + 0 + 27

2 x2

≠ 3x3 + (≠25
2 )x2

≠ 3x3 + 0 ≠ 9x
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Substraction again. We subtract:

9
2x2 ≠ 3x

x2 + 3)) 9x4 ≠ 3x3 + x2 ≠ 10x + 4
9x4 + 0 + 27

2 x2

≠ 3x3 + (≠25
2 )x2

≠ 3x3 + 0 ≠ 9x

(≠25
2 )x2 ≠ x

Remark 12.2.12. In fact, during the subtraction step, some people like to
have brought down the relevant lowest-degree term, too, so people would
have written the previous step as follows (the di�erence is in blue):

9
2x2 ≠ 3x

x2 + 3)) 9x4 ≠ 3x3 + x2 ≠ 10x + 4
9x4 + 0 + 27

2 x2

≠ 3x3 + (≠25
2 )x2 ≠ 10x

≠ 3x3 + 0 ≠ 9x

(≠25
2 )x2 ≠ x + 4

We keep repeating, resulting in work as follows:
Division again again:

9
2x2 ≠ 3x ≠ 25

2
x2 + 3)) 9x4 ≠ 3x3 + x2 ≠ 10x + 4

9x4 + 0 + 27
2 x2

≠ 3x3 + (≠25
2 )x2 ≠ 10x

≠ 3x3 + 0 ≠ 9x

(≠25
2 )x2 ≠ x + 4
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Multiplication again again:

9
2x2 ≠ 3x ≠ 25

2
x2 + 3)) 9x4 ≠ 3x3 + x2 ≠ 10x + 4

9x4 + 0 + 27
2 x2

≠ 3x3 + (≠25
2 )x2 ≠ 10x

≠ 3x3 + 0 ≠ 9x

(≠25
2 )x2 ≠ x + 4

(≠25
2 )x2 + ≠75

2 x

Subtraction again again:

9
2x2 ≠ 3x ≠ 25

2
x2 + 3)) 9x4 ≠ 3x3 + x2 ≠ 10x + 4

9x4 + 0 + 27
2 x2

≠ 3x3 + (≠25
2 )x2 ≠ 10x

≠ 3x3 + 0 ≠ 9x

(≠25
2 )x2 ≠ x + 4

(≠25
2 )x2 + ≠75

2 x
73
2 x + 4

And we are finally finished when, at the bottom, we end up with a polynomial
whose degree is less than the degree of the divisor. In this case, 73

2 x ≠ 4 has
degree less than x2 + 3. What we conclude is

9x4 ≠ 3x3 + x2 ≠ 10x + 4 = (9
2x2 ≠ 3x ≠ 25

2 )(x2 + 3) + (73
2 x + 4).

So the remainder r is the polynomial

73
2 x + 4.

In the notation of the theorem, q is the polynomial

9
2x2 ≠ 3x ≠ 25

2 .



144LECTURE 12. COMPUTATIONS, AND POLYNOMIALS OVER FIELDS

12.3 Proof of Theorem 12.2.3

First, let us note that the division algorithm always terminates (i.e., it does
not go on forever). The reason is as follows.

Noting that the division algorithm repeats the divide-multiply-subtract
cycle over and over, we observe that the ith cycle begins by trying to divide
some polynomial pi by the divisor. (In the worked-out example above, in the
1st cycle, we were dividing p1 = 9x4 ≠ 3x3 + x2 ≠ 10x + 4. In the 2nd cycle,
we were dividing p2 = ≠3x3 + (≠25

2 )x2 ≠ 10x, and in the third cycle, we were
dividing p3 = (≠25

2 )x2 ≠ x ≠ 4; all by x2 + 3.)
Then pi always has smaller degree than pi≠1. This is because—by the

design of the multiplication and subtraction step—pi is obtained from pi≠1
by subtracting o� a polynomial whose top degree term agrees with the top
degree term of pi≠1.

So, if the original dividend a = p1 has degree n, and if the divisor b
has degree m, then after at most i = n ≠ m + 1 cycles, we see that pi has
degree strictly less than m, at which point the division algorithm stops be-
cause a degree m polynomial b cannot factor into a polynomial pi of lesser
degree. (After all, degrees add when we multiply polynomials—see Proposi-
tion 7.3.25.)

We have finished our proof that the division algorithm terminates. It is
a tedious exercise in the distributive property to verify that the algorithm
indeed produces polynomials q (the quotient) and r (the remainder) for which

a = qb + r.

We leave this tedious verification to our dear reader.
Now let us prove uniqueness. Suppose qÕ and rÕ are two other polynomials,

with deg(rÕ) < deg(b), satisfying a = qÕb + rÕ. Then we have that

(q ≠ qÕ)b = r ≠ rÕ.

Now, the righthand side is a polynomial of degree strictly less than deg b. On
the other hand, the lefthand side is a polynomial of degree at least b unless

q ≠ qÕ = 0. Thus, we conclude q ≠ qÕ = 0, meaning q = qÕ. It follows that r
must equal rÕ, completing the proof.
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12.4 Using a zero of a polynomial to factor
That we can divide polynomials with remainders (Theorem 12.2.3) is incred-
ibly powerful. Here we record some useful corollaries.
Remark 12.4.1. In fact, the corollaries below are true even if R is just an
integral domain, and not a field. The reason is that in all the polynomial
divisions we perform in proving the corollaries, the divisor is always a poly-
nomial whose highest-degree coe�cient is 1; and we can always divide by 1,
field or not.
Corollary 12.4.2. Let R be a field and fix a polynomial a œ R[x]. Suppose
that for some value x0 œ R, we know that a(x0) = 0. Then there exists some
polynomial q(x) for which

a(x) = q(x)(x ≠ x0).

Proof. Setting b = x ≠ x0, we may use Theorem 12.2.3 to conclude there
must exist q and r so that

a(x) = q(x)(x ≠ x0) + r(x). (12.4.0.1)

Moreover, since1 deg(b) = deg(x ≠ x0) = 1, we know that r(x) must have
degree 0 (or ≠Œ, if r = 0). In particular, r(x) is a constant polynomial, and
we may write r(x) = C for some constant C. We are finished if we can prove
C = 0.

Well, let us plug in the value x = x0. Then (12.4.0.1) becomes

a(x0) = q(x0)(x0 ≠ x0) + C.

Note that the hypothesis of the corollary tells us that a(x0) = 0. On the
other hand, x0 ≠ x0 = 0. So we have

0 = 0 + C.

This shows C = 0.
Corollary 12.4.3. Let R be a field and fix a degree n polynomial a. Suppose
that there are n distinct elements x1, . . . , xn œ R for which a(xi) = 0. Then

a(x) = C(x ≠ x1)(x ≠ x2) . . . (x ≠ xn)

for some constant C œ R.
1Note that x0 is a constant (i.e., an element of the base ring R) while x is a variable.
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Proof. We proceed by induction on the degree of a, with base case deg a = 1.
If deg a = 1, Corollary 12.4.2 gives us the result we seek (by noting that

deg q must be 0.)
For the inductive step, let us assume we have proven the result for all

degree n ≠ 1 polynomials. Given a degree n polynomial a with zeroes as
stated in the hypothesis, we use Corollary 12.4.2 to conclude

a(x) = q(x)(x ≠ xn)

where q has degree n ≠ 1. But because R is a field (and in particular, an
integral domain) the fact that a(xi) = 0 but (xi ≠ xn) ”= 0 means q(xi) must
equal zero. So the x1, . . . , xn≠1 are zeroes of q, and the inductive hypothesis
tells us

q(x) = C(x ≠ x1) . . . (x ≠ xn≠1).
Combining the above two centered equations, we are finished.

12.5 Exercises
Exercise 12.5.1. (a) Write out the addition and multiplication tables for

Z/7Z.

(b) Which elements of Z/7Z have multiplicative inverses?

(c) Which elements of Z/7Z have square roots?

(d) Is Z/7Z an integral domain?

(e) Is Z/7Z a field?

Exercise 12.5.2. (a) Write out the addition and multiplication tables for
Z/8Z.

(b) Which elements of Z/8Z have multiplicative inverses?

(c) Which elements of Z/8Z have square roots?

(d) Is Z/8Z an integral domain?

(e) Is Z/8Z a field?

Exercise 12.5.3. Let n be an integer with n Ø 3.
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(a) Show that there is at least one element a œ n for which the equation
x2 ≠ a = 0 has no solution in Z/nZ. (In other words, prove that there
is at least one element of Z/nZ that is not a square; i.e., that has no
square root in Z/nZ.)

(b) In fact, show that at most (n + 1)/2 elements of Z/nZ are squares.

Exercise 12.5.4. Let a(x) = 3+4x≠7x5, and let b(x) = 3x3 ≠2x+1. Note
that you can consider these as polynomials with coe�cients in Z/nZ for any
n, by simply thinking of a coe�cient as the equivalence class represented by
the coe�cient. (So for example, think of ≠7 as [≠7].)

Using the division algorithm for polynomials, for each of the following
values of n, compute the polynomials q(x), r(x) œ Z/nZ for which a(x) =
q(x)b(x) + r(x) and deg r < deg b.

(a) n = 2

(b) n = 3

(c) n = 5

(d) n = 7.

(You may need to think about what the multiplicative inverse to some num-
bers are in each of the rings Z/nZ above.)

Exercise 12.5.5. Let R = Z/5Z. Note that 2 is not a square in R (for
example, by looking at the multiplication table of Z/5Z). So the polynomial
x2 ≠ 2 has no solution in R.

Consider the quotient ring S = (Z/5Z)[x]/(x2≠2). (That is, one considers
polynomials with coe�cients in Z/5Z, then quotients this polynomial ring
by the principal ideal generated by x2 ≠ 2.)

(a) How many elements does S contain? (Hint: Use the division algorithm to
see that every equivalence class has exactly one representative of degree
Æ 1.)

(b) In the ring S, is there some element that squares to 2?

(c) Prove or disprove: S is a field.
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12.6 Extra Credit
(a) Prove that if p is a prime number, then Z/pZ is a field. (If you prove

this, you will have shown that for any prime number p, there exists a
field with p elements.) Hint: This will require the Euclidean algorithm,
see Exercise 9.9.2.

(b) Let p be any prime number. By combining Exercise 12.5.3 with ideas
from Exercise 12.5.5, show that there exists a field with exactly p2 ele-
ments.

Note: It turns out that (i) For every k Ø 1, there is a field with pk

elements, and (ii) If F is a finite field, then F has pk elements for some prime
p and some integer k Ø 1. We don’t quite have the machinery to prove these
claims yet.
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12.7 Idea map assignment

We have now completed the portion of our course that focuses on rings.

For this assignment, I want you to make a graphical representation of the
ideas we’ve learned so far.

Below are fewer than 40 key ideas and terms we’ve talked about.

Prompt. I want you to make an “idea map” either by hand or digitally.
An idea map is a visual representation expressing the relationships between
various ideas. I’d like you, on this idea map, to include at least 20 of the
ideas/terms below, and indicate how2 they are connected to each other.

Example 12.7.1. For example, your representation may just look like a
graph with lines between them, with lines indicating some “connection.” But
in drawing this connection, you must indicate what the connection actually
is. For example:

Ring If xy = yx≠≠≠≠≠æ Commutative ring If xy = 0 =∆ x or y is 0≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ Integral domain

2This means just drawing arrows/bridges/lines is not enough—you must verbally or
otherwise communicate what substantiates those arrows, or what the connections are.
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The same connections might be drawn as follows:

Integral domain

Commutative ring

If xy = 0 =∆ x or y is 0

Ring

If xy = yx

Be creative, and feel free to run wild. At the same time, do not plan for
anything too grandiose. It is more important to get the connections laid out
than to make things look nice.

The terms/ideas, grouped by some arbitrary associations:

(A) (a) Ring
(b) Commutative Ring
(c) Integral domain
(d) Field

(B) (a) Multiplicative identity
(b) Additive identity
(c) Additive inverse

(C) (a) Commutativity of addition
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(b) Associativity of addition
(c) Associativity of Multiplication
(d) Distributivity of multiplication over addition

(D) (a) R[x]
(b) R[x1, . . . , xn]
(c) M2(R)
(d) C

(e) Z

(f) Q

(g) R

(h) Z/nZ

(i) Z/pZ

(E) (a) Prime ideal

(F) (a) Algebraic set
(b) Algebraic function
(c) Ideal

(G) (a) Equivalence relation
(b) Equivalence class
(c) Quotient map
(d) Ideal
(e) Quotient ring

(H) (a) Universal property of quotient rings

(I) (a) Ring homomorphism
(b) Ring isomorphism

(J) (a) Action of C on R
2

(b) Action of M2(R) on R
2


