
Lecture 14

Symmetries and groups

14.1 Goals
1. Understand why groups are defined the way they are

2. See examples of groups

3. See that “symmetry” is a notion that depends on specifying what prop-
erties of an object one wants to preserve

14.2 Symmetries
Today we’re going to leave behind the idea of rings for a bit, and focus on the
idea of a group. Groups arise in nature when one studies symmetries. The
set of all symmetries of a shape is the most common example of a group.

More abstractly, it turns out that you can abstract the notion of symmetry
as any operation the preserves some structure on an object—so symmetry
will no longer be just about shapes. We’ll come back to this shortly.

Finally, when you enumerate, and understand the relations between, all
the symmetries of certain objects, it may magically turn out that one object
has an analogous set of symmetries to a seemingly unrelated object. In other
words, two very di�erent objects may have isomorphic symmetry groups. So
groups begin to give us a deeper insight into the world around us—some
objects that seem very di�erent may actually have things in common.1

1
This is similar to the discovery that Q and Z admit a bijection between them. As sets,
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164 LECTURE 14. SYMMETRIES AND GROUPS

So, think of a shape. Maybe a circle, a square, a regular pentagon. What
do we mean by a symmetry of this shape?

Confusingly, we are taught about symmetry as just a visual property. But
in this course, we will think of symmetry as follows:

Definition 14.2.1 (A vague definition of symmetry). A symmetry of an
object is some operation we can perform on the object (i) while maintaining
an important properties of that object, and (ii) which we can undo.

More accurately, let O be an object, and P some collection of properties.
A symmetry of O is an operation we can perform on O without changing P,
and which we can undo.

So to specify what we mean by a symmetry, we must say not only the
object we are considering, but what about that object we want to preserve.

Example 14.2.2. Consider the isosceles triangle T in the picture above; we
will treat it as a subset of R

2 consisting only of the edges and vertices (T
does not include the “interior” of the triangle). What properties about T

could we care about?

(a) (T as a set.) Let’s say you only care about T as a subset of R
2—in

other words, as the shape drawn on the sheet of paper. Then the natural
property we may want to preserve is: Which subset of R2

T is. A natural
notion of an operation preserving this data, then, is a function from T

to T that is a surjection. For is f is a surjection, then f(T ) = T , so
we preserve the subset of R2 we care about. But if we further want f

to be an operation we can “undo,” then we’d better demand that f is a
bijection (so we can “undo” f by applying its inverse).
This is a crazy large set of symmetries of T . Indeed, there are uncount-
ably many bijections from T to itself. To visualize a crazy bijection,
imagine that each point of T is a bee, and we simply allow the bees to
fly around, then land again anywhere along T . Points/bees that may
have started nearby may end up completely far from each other.

the two are equivalent; the other structures on these sets—such as their addition, or their

multiplication—are what distinguish them meaningfully. This insight alone is a powerful

way to understand how we di�erentiate objects in math.
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(b) (T as a space.) You could further care not only about T as a subset of
R

2, but as a “shape” or as a “space.” Put informally, by a symmetry
of T , we can now mean an operation which requires us to not tear T

apart. The natural notion we learn about in multivariable calculus to
realize this intuition is the notion of a continuous function. So, we could
now narrow down our symmetries to not only be a bijection from T to
itself, but a bijection which is also continuous.2 A typical such symmetry
could be visualized as follows: Imagine that T consists of amoebas that
are only allowed to travel along T , and who are not allowed to climb over
each other; but they can be squished to change size. It again turns out
that there are a lot of such symmetries—the set of them is uncountable.
But perhaps you can see that the set of continuous bijections of T is
naturally a subset of all bijections of T .

(c) (T as something with a notion of distance.) Of course, T has even more
structure. If we draw T on R

2, given any two points on T , we can
say what the distance between those two points is. So what if we want
symmetries of T to preserve distances between points? It turns out there
are only 6 operations we can do to T that preserve distance.3

Example 14.2.3. Let’s consider symmetries of C. As before, if we think of
C just as a set, there are uncountably many symmetries. Now let’s think of
C as some ring that contains R, and let’s think of symmetries that respect
this structure. In other words, let’s think of functions f : C æ C that send
real numbers x to themselves (so x œ R =∆ f(x) = f(x)), that happen to
be ring homomorphisms (so f respects the ring structure of C) and that are
bijections (so f can be undone).

In fact, there are only two such functions: The identity function (sending

2
For more complicated shapes, we should also demand that the bijection’s inverse is

continuous. It turns out there are continuous bijections whose inverses are not continuous;

but this is for a course in point-set topology.
3
Here is a proof that there are at most 6: The points farthest from each other on the

triangle are the vertices, so any function f : T æ T that preserves distance must send

vertices to vertices. A permutation count shows there are at most 6 permutations of the

vertices. And in fact, once you specify what a distance-preserving function must do to

vertices, this completely determines what the function does on all points on T—this is

because if x is on some edge between two vertices v and vÕ
, a distance-preserving function

f must send f(x) to a point on the edge between f(v) and f(vÕ
) with specified distance

from each vertex, and there is only one such point.
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z to z) and complex conjugation (sending z to z).4
This is in contrast to thinking of C, say, as the space R

2 with a notion of
distance. It turns out there are infinitely many bijections of R2 that preserve
distance. For example, choose any point, and rotate any amount around that
point; or, choose any vector, and translate R

2 by that vector. Or, choose any
line, and reflect about that line.5 Complex conjugation is an example of this
last operation: Reflecting about the real line.

The two take-aways: We think of a symmetry as a reversible operation on
an object, and whether a reversible operation counts as a symmetry depends
on what properties of the object we want to preserve.

14.3 Definition of group
As I wrote above, the notion of group arises when we try to articulate the
set of all symmetries of an object. Here are some non-trivial, but sensible,
properties that a set of symmetries should satisfy:

(i) If f is a symmetry of an object, and g is another symmetry, we should
be able to “do one symmetry after another” to obtain a new symmetry
gf (or, if one does it in the other order, fg).
In other words if, G is a set of symmetries of an object, it should have
a binary operation G ◊ G æ G. We’ll often call this “composition” or
“multiplication.” Aren’t things getting pretty exciting already?

(ii) “Do nothing” should be a symmetry of any object. (If we don’t do
anything to an object, we certainly preserve all its properties. And
“do nothing” is certainly a reversible process—as we haven’t changed
anything!)
So, there should be a “multiplicative unit” or an “identity element” in
a set of symmetries. After all, if e is the “do nothing” symmetry, and f

is any other symmetry, we should have that fe = ef = f because “do
nothing, then do f” and “do f , then do nothing” are the same as “just
do f .”

4
You should explore why this is! Hint: If f : C æ C is a ring homomorphism and if

z2
= ≠1, then f(z)

2
= ≠1, too.

5
It turns out that any distance-preserving function f : R

2 æ R
2

is a finite composition

of these operations.
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(iii) Any symmetry should have an “inverse” symmetry (because we can
undo a symmetry operation).
So, every element f in a set of symmetries should have an inverse h for
which fh = e and hf = e. (To “undo” f means to do an operation h

so that the end-result of doing fh is to “do nothing.”

(iv) And, of course, composing symmetries should be an associative opera-
tion.

We formalize these intuitions into the following definition:

Definition 14.3.1. A group is the data of a set G, together with a binary
operation (that we will often call a multiplication, or the group operation)
satisfying the following properties:

1. There exists an element e so that, for every g œ G, we have eg = g and
ge = g. We call e the “identity element” of a group.

2. For every g œ G, there exists an element h œ G so that gh = e and
hg = e. We will often call h the multiplicative inverse or inverse to g.

3. The binary operation is associative, so g(hk) = (gh)k for any triplet
g, h, k œ G.

Notation 14.3.2. If we need to give an explicit name to the binary operation
of a group, we will often use the letter m (for multiplication). So m is a
function m : G ◊ G æ G, and the most explicit way to write the product gh

would be to write m(g, h).6

Notation 14.3.3. Though the data of a group is, strictly speaking, the data
of the pair (G, m), we will often write things like “Let G be a group,” with
the multiplication implicit in the notation.

In contrast, if the operation needs to be made explicit, we will often say
G is “a group under m.” For example, we will later see that Z is a group
under addition, but not under multiplication.

Remark 14.3.4. Recall that in a ring, when you posit the existence of a
multiplicative identity 1, it is unique—in that any other 1Õ satisfying the
defining property of a multiplicative identity must equal 1.

6
But life is short, so we will often write gh instead.
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Likewise in a ring, a multiplicative inverse is unique.
The exact same proofs apply to show that the identity element of a group

G is unique, and that the inverse to an element g is unique. For this reason,
we will say “the” identity element and “the” inverse to an element g.

Notation 14.3.5. Let G be a group and fix an element g œ G. We let g
≠1

denote the inverse to g.
More generally, let n be an integer. We let g

n denote the following:
Y
__]

__[

g · . . . · g n times, if n > 0
(g≠1) · . . . · · · (g≠1) ≠n times, if n < 0
e if n = 0.

So for example, g
≠3 is the product of g

≠1 with itself three times.

14.3.1 Abelian groups
Nothing above says that the group operation must be commutative–gh could
be unequal to hg. We have a special name for when the group operation is
commutative:

Definition 14.3.6. We say that a group G is abelian if, for every g, h œ G,
we have that gh = hg.

Remark 14.3.7. “Abelian” is a word derived from the name of Neils Henrik
Abel, a Norwegian mathematician who died at the age of 26 in 1829. He
studied polynomials whose roots had a symmetry group with commutative
multiplication.

Remark 14.3.8. Often, when a group G is abelian, it is common to write
“g + h” instead of gh. Just be ready for such notation in the future. There
is not concrete rule that says when you should write g + h rather than gh in
an abelian group; it often has to do with the intuitions of the writer in the
moment.

Example 14.3.9. Let G be a set with one element. Then of course there
is a unique function m : G ◊ G æ G; this renders G a group. The identity
element is the only element of G, and the identity element is its own inverse.
This is called the trivial group. It is an abelian group.
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14.4 Example: The mattress group
Let’s begin with a silly real-life example.

Consider a twin mattress. For ease of visualization, we’ll pretend that
the mattress is already placed in a (twin-sized) bed frame.

Now, how many ways are there that we can physically re-place the mattress
so that it fits inside the frame snugly again?

For ease of visualization, let me put a little X in one corner of the mattress
that we can follow. Then (and you should try this at home!) there are four
ways we can re-place the mattress. The first one is “do nothing,” where
the little X begins in the far right corner. The other three symmetries are
rotations about one of three axes:

e (Do nothing)

X

Rz (Rotate 180¶ about z-axis)

X

Ry (Rotate 180¶ about y axis)

X

Rx (Rotate 180¶ about x axis)

X

Note that the y axis is pointing at you, out of the page. (By the way, you
may have asked: Wait, rotate 180 degrees in which direction? You end up
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with the same operation regardless of whether you spin clockwise or counter-
clockwise, so long as you fix an axis.)

So, while you’ve probably never thought about this, there are a total of 4
configurations in which you can fit a mattress into a frame. In other words,
there are four symmetries to a mattress. We say that “the symmetry group
of the mattress has four elements.”

But wait, the interesting part about groups is the composition law. In
other, what happens when we do one of these symmetries after another?

Let’s first apply Rz, and then apply Ry. Here’s what we get:

Rz

X

RyRz

X

Look familiar? What we see is the relation RyRz = Rx! I encourage you to
do this at home—if not with a mattress, then some other rectangular solid
like a tissue box, or a notebook. Then the multiplication table for this group
looks as follows:

e Rx Ry Rz

e e Rx Ry Rz

Rx Rx e Rz Ry

Ry Ry Rz e Rx

Rz Rz Ry Rx e

It might surprise you to see that this multiplication table is symmetrical
along the diagonal—in other words, the group of symmetries of a mattress is
abelian! Moreover, every element is its own inverse (this is why the diagonal
consists of the identity element in each entry).

14.5 Exploratory example: A square mattress
Let’s call a mattress square if one of its faces is a square. These may not exist
in real life, but it’s fun to think about the following problem regardless.7

7
A king size bed is very nearly square, but not quite.
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Intuitively, a “square” mattress seems more symmetric than an ordinary
mattress—just as a square seems more symmetric than a rectangle. For ease
of visualization, I will draw my mattress as though it is standing straight up:

¶

(The face closest to you is the square face.) I’ve marked one corner with
a ¶ symbol to make the following pictures easier to interpret. We have the
following basic operations we can do to the mattress:

Rz

¶

Ry

¶

Qx (Rotate 90¶ about x axis)

¶

Note that Qx is a 90-degree rotation while the others are 180 degree rotations.
We’ve written four of the symmetries of a square mattress–e, Rx, Rz, and

Ry. In fact, there should be eight total.
Exercise 14.5.1. Draw pictures of all 8 symmetries you can perform on a
square mattress.
(a) Write the multiplication table (it is 8-by-8). This will involve you choos-

ing letters/names for all 8 of the symmetries. Choose wisely!
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(b) Is the group of symmetries of a mattress abelian?

(c) Let’s write Rx for the operation Q
2
x. If you limit yourself to a well-chosen

set of 4 rows and 4 columns, does your multiplication table look like the
multiplication table of the symmetries of a non-square mattress?

14.6 The history that led to the idea of groups
We may have occasion to talk about this another time. But in case we don’t,
let me tell you where groups were first studied systematically.

A lot of mathematicians would credit Evariste Galois as among the first
people to abstractly study groups. In fact, Galois combined two areas of
mathematics: The area in which one studies symmetries (e.g., groups), and
the area in which one studies solutions to polynomial equations. Indeed, just
as we’ve seen that there is a ring automorphism C æ C that fixes R (and
exchanges i with ≠i), in general there are ways to “adjoin” new numbers to
a given field to solve polynomial equations. For example, you can think of
Q[

Ô
2] as the smallest ring inside C that contains both Q and

Ô
2. It turns out

that such extensions have symmetries that permute the roots of polynomi-
als. The fundamental theorem of Galois theory gives an explicit relationship
between subgroups of a symmetry group and intermediate extensions of a
given field.

When phrased in this way, it probably seems like an amazing leap of
imagination that “symmetry” (a geometric concept) can have a profound
impact on algebra. I don’t know to what extent Galois would have used
the word “symmetry” to describe what he was doing. I think he mainly
thought of his symmetries as just exchanging roots around—nothing more
than permutations. And perhaps it is a more modern way of thinking that
a permutation is a symmetry of a set.

14.7 Exercises
Exercise 14.7.1. For this problem, you may assume the following fact from
linear algebra: If A and B are n-by-n matrices over R, then

det(AB) = det(A) det(B).
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(Here, det is the determinant.) Using the fact that the determinant of the
identity matrix is 1, show that if A is an invertible matrix, then det A cannot
be zero. The converse is also true, but we do not prove it here. (If you are
curious, you may look up Cramer’s Rule.)

(In fact, this holds in Mn(R) when R is any commutative ring, not nec-
essarily R. In this generality, it turns out that a matrix is invertible if and
only if its determinant is a unit of R.)

Exercise 14.7.2. In some textbooks, they demand that a group G be “closed”
under the multiplication operation. This is a bit old-fashioned; it comes from
the fact that we often define operations but make the mistake that the out-
put of an operation might not be in the correct set. Here is an exercise
illustrating this:

Let R be a ring (not necessarily commutative). Verify that if x and y are
units, then xy is also a unit. (Thus, we say that “the set of units is closed
under multiplication.”)

Exercise 14.7.3. We say that a group G is cyclic if there exists some g œ G

so that the set {g
n
, n œ Z} = {. . . , g

≠2
, g

≠1
, e, g, g

2
, . . . is all of G. (We say

that g “generates G.”)

1. Prove that (Z/4Z)◊ is a cyclic group.

2. Prove that (Z/8Z)◊ is not a cyclic group.

3. Prove that (Z/5Z)◊ is a cyclic group.

Gauss proved the following amazing result: (Z/nZ)◊ is cyclic if and only if
n is 2, 4, p

k, or 2p
k for some odd prime.

Exercise 14.7.4. Let G be a group.

1. Prove that the identity element of G is unique.

2. Let g œ G. Prove that the inverse of g is unique.

3. Prove that (gh)≠1 = h
≠1

g
≠1.


