
Lecture 15

Facts about groups, and
examples of groups, I: Additive
groups, units in a ring

15.1 Goals
1. Understand that every ring has an underlying additive group.

2. Understand that every ring gives rise to a group of units.

3. Begin to explore matrix groups

Last time we focused a lot on the idea of symmetry. After talking about
what a set of symmetries ought to satisfy, we came upon the following defi-
nition of a group:

Definition 15.1.1 (See Definition 14.3.1). A group is the data of a set G,
together with a binary operation m : G ◊ G æ G (for brevity, we will write
m(g, h) as gh) satisfying the following:

1. There is an element e œ G so that, for every g œ G, we have eg = ge =
g. (This e is unique, and we call it the identity element of G.)

2. Every g œ G has an inverse. That is, there exists an element g≠1 so
that gg≠1 = g≠1g = e. (This g≠1 is unique.)
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3. Finally, m is an associative operation. This means for every g, h, k œ G,
we have (gh)k = g(hk).

Today, we’re going to see somewhat “formal” examples of groups. By
this, I mean that the algebraic content will be our entry point, and the
“symmetry” angle will be more obscure. That the notion of groups can be
useful for both languages—the algebraic and the geometric—is a powerful
feature of the theory.

15.2 Examples from rings
Let’s establish the most concrete ways in which groups and rings are related.
This also illustrates the two di�erent roles that groups often play in nature;
see Remark 15.2.11.

15.2.1 Groups under addition
Many abelian groups in nature have an “additive” feel about them, perhaps
as insinuated by the following:

Proposition 15.2.1. Let R be a (not necessarily commutative) ring. Then
R is an abelian group under addition. That is, the pair (R, +) is an abelian
group.

Proof. The defining properties 1, 2, and 3 of a group (see Definition 14.3.1)
are the properties 1a, 1b, and 1d of a ring (see Definition 2.3.1), respectively.
Finally, the requirement that addition be commutative (Property 1c of a ring)
shows that R under addition is not only a group, but an abelian group.

Example 15.2.2 (The additive structure of rings.). All of the following are
rings. In particular, all of the following are groups under addition:

• Z,Q,R,C.

• R[x]

• M2(R)

• Z/nZ for n Ø 0.
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15.2.2 Groups of units
In contrast, (R, ◊) is not a group. Two of three requirements for being a
group are satisfied—◊ is associative, and the multiplicative identity 1 of R
is an identity element for ◊—but the element 0 œ R has no multiplicative
inverse.

Even if we remove 0 from the situation, (R \ {0}, ◊) is not a group in
general. For example, M2(R) \ {0}, the set of all non-zero 2-by-2 real matri-
ces, is not a group under multiplication because some elements do not have
multiplicative inverses. Consider for example the matrix

A
1 0
0 0

B

has no multiplicative inverse because it is a zero divisor (Exercise 15.5.1).
This is again due to the fact that some elements do not have multiplicative
inverses (due to the presence of zero divisors).

However, let’s try restricting ourselves to a subset of R known to have
multiplicative inverses:

Definition 15.2.3 (Units). Let R be a (not necessarily commutative) ring.
A unit of R is an element x œ R for which there exists some y œ R so that
xy = 1 and yx = 1. We let

R◊

denote the set of all units in R.

Remark 15.2.4. Be careful: The definition of unit requires that x is invert-
ible “from the left and from the right.” (So not just that xy = 1, but also
that yx = 1.)

Sometimes, one needs only for x to be invertible from one side to guar-
antee that x is invertible from the other side.

If R is commutative, of course xy = 1 ≈∆ yx = 1.
More generally: Suppose that x and y are elements of a ring R for which

xy = 1. If R has no zero divisors, one can then conclude that x is a unit.
For we have that

xy = 1 =∆ yxy = y =∆ (yx ≠ 1)y = 0 =∆ y = 0 or xy = 1

(where the last implication follows by the assumption that R has no zero
divisors). If y = 0, the beginning equality tells us that 0 = 1 in this ring,
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meaning R would be the trivial ring (in which case every element is a unit,
because the trivial ring only has one element 0 = 1). If R is not the trivial
ring, then we conclude xy = 1, meaning x is a unit.

Proposition 15.2.5. Let R be a (not necessarily commutative ring).

(a) If x is a unit and xÕ is a unit, the xxÕ is a unit.

(b) (R◊, ◊) is a group. (That is, the units of R are a group under multipli-
cation.)

(c) In particular, if R is a field, then (R \ {0}, ◊) is a group. In fact, it is an
abelian group.1

Proof. (a) Suppose x and xÕ are units. That means there exist elements y
and yÕ for which xy = yx = 1 and yÕxÕ = xÕyÕ = 1. I claim that yÕy is a
multiplicative inverse to xxÕ. Behold:

(yÕy)(xxÕ) = yÕ(yx)xÕ = yÕ1xÕ = yÕxÕ = 1

where the first equality is associativity, the next is the fact that yx = 1,
and the last equality again uses that yÕxÕ = 1. One can likewise prove that
(xxÕ)(yÕy) = 1, so proving the claim.

(b) By the previous paragraph, we see that the set of units is closed
under multiplication. So multiplication indeed defines a binary operation
on the set of units. 1 is obviously a unit, and serves as a multiplicative
identity of (R◊, ◊). R◊ has inverses because if x is a unit, its inverse y is
also a unit (you should think through this if this isn’t clear to you yet; it’s a
worthwhile exercise to clear confusion). Finally, multiplication is associative
by the assumption that R is a ring. This shows (R◊, ◊) satisfies all the
properties of being a group (Definition 14.3.1).

(c) By definition, if R is a field, every non-zero element is a unit. Hence the
set of units R◊ is equal to R\{0}. Again by definition of field, multiplication
is commutative, so R \ {0} is an abelian group, as claimed.

To summarize: Any ring R naturally gives rise to two groups. An abelian
group given by (R, +), and a not-necessarily abelian group given by the group
of units (R◊, ◊).

So, let’s talk about specific examples of the above.
1
This is a rare example of an abelian group that does not have an “additive feel.”
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Example 15.2.6 (Units of Z/nZ for small values of n). We refer to the
multiplication tables in (12.2.3.1) for verification of the claims below. (If you
want to know whether an element a has a multiplicative inverse, you simply
need to check whether the row containing a contains 1.)

Let’s consider the ring Z/2Z. It groups of units consists of one element
called 1.

In the ring Z/4Z, we see that only the elements 1 and 3 have multiplicative
inverses. (3 is its own inverse!) So (Z/4Z)◊ is a group with two elements.

In the ring Z/5Z, every non-zero element has a multiplicative inverse. So
the group of units (Z/5Z)◊ is a group with 4 elements.

Remark 15.2.7. We have now seen two groups with four elements: The
units of Z/5Z, and the symmetries of a (non-square) mattress. We will later
see that the size of a group only says so much—two groups of the same size
might be inequivalent. We will soon define the notion of a group isomorphism

to articulate ways in which two groups are equivalent. For now, you could
wonder: Are these two groups with four elements equivalent in some way?
How would you articulate that?

Example 15.2.8 (Units of some polynomial rings). Let R be an integral
domain (so R is commutative and has no zero divisors; our favorite example
of R = R is in fact a field).

What are the units of the polynomial ring R[x]?
By definition of unit, a polynomial p is a unit if and only if there’s an-

other polynomial q for which pq = 1. You have seen that when you multiply
polynomials, degrees add in R[x] so long as R is an integral domain (Propo-
sition 7.3.26). So the fact that p is a unit means there is some polynomial q
for which

deg(p) + deg(q) = deg(1) = 0.

But for this equality to hold, we must have that deg(p) = deg(q) = 0. In
other words, if p is a unit, it must be a degree 0 polynomial—i.e., a constant
polynomial.

So when does a constant polynomial p have a multiplicative inverse? Pre-
cisely when p (considered as an element of R) has a multiplicative inverse.
What we have proven is

(R[x])◊ = R◊

when R is an integral domain. (This equality is made precise if one thinks
of R as a subset of R[x].)
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So when R is an integral domain, the polynomial ring doesn’t really give
us any new group of units—the group of units of R[x] is equivalent to the
group of units of R.

Remark 15.2.9. When R is not an integral domain, R[x] can have some
interesting units. For example, if there is a non-zero element a of R which
squares to zero, then

(1 + ax)(1 ≠ ax) = 1 ≠ a2x2 = 1

so that linear polynomials can be units. An example is when R = Z/8Z and
a = 4.

Example 15.2.10. Consider the ring M2(R). Then the group of units
M2(R)◊ is the set of all 2-by-2 matrices that admit a multiplicative inverse—
that is, the collection of all invertible linear transformations. This group is
written

GL2(R).

More generally, for any n Ø 0, the set of n-by-n invertible matrices forms a
group (under matrix multiplication), and this group is denoted

GLn(R).

Each of these is called the (real) general linear group.

Remark 15.2.11. Groups often play two di�erent roles in mathematical
practice.

First, they might be the object of study themselves. A question like
“What is the group of symmetries of a square mattress?” or “Can we un-
derstand GLn(R)” are questions that can draw the curiosity of many math-
ematicians.

Second, they are often tools of computation. This is most obvious for
groups like Z and R, where “numbers” feel like a very useful tool for quan-
tifying things. But groups like Z/nZ—even without considering their ring
structure, and only remembering their additive structure—are used all the
time in computation.
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15.2.3 GL2(Z/2Z)
Recall that for any ring R, we could define Mn(R), the ring of n-by-n matrices
with entries in R (Theorem 3.5.2).

Definition 15.2.12. For any ring R, we let GLn(R) denote the group of
units of Mn(R).

In words, GLn(R) is the group of invertible n-by-n matrices with entries
in a ring R. We saw the case R = R in Example 15.2.10.

Remark 15.2.13. This remark will assume some linear algebra knowledge.
For any commutative ring R, one can define the determinant of an n-by-n

matrix with entries in R using the usual formula from linear algebra. One
can further prove that det(AB) = det(A) det(B). You can verify this for
yourself for the case of 2-by-2 matrices; for higher rank matrices, you can see
a proof in a linear algebra class.

Because the determinant respects multiplication, and knowing that the
determinant of the identity matrix is always 1, we see that for A to be invert-
ible (i.e., for A to be a unit in Mn(R)) it must have a unit determinant (i.e.,
det(A) must be in R◊). Conversely, by Cramer’s rule (which works for ma-
trices with entries in any commutative ring) any matrix with a determinant
in R◊ admits an inverse.

The upshot: GLn(R) can be identified exactly with those matrices for
which the determinant is a unit of R.

Let’s work out the example of n = 2 with the ring R = Z/2Z.
First, note that M2(Z/2Z) has exactly 24 = 16 elements. This is because

there are four entries in a 2-by-2 matrix (so there are four choices to be
made) while there are only 2 elements in Z/2Z (so there are 2 options for
each choice).

By Remark 15.2.13, GL2(Z/2Z) consists exactly of those matrices whose
determinants are non-zero.

Given a 2-by-2 matrix
A

a b
c d

B

, the determinant is computed by ad ≠ bc.

So we see that for a matrix to have non-zero determinant, the first column
must therefor not identically be zero. So any A œ GL2(Z/2Z) must have one
of the following three possible first-columns:

A
1 b
0 d

B A
1 b
1 d

B A
0 b
1 d

B
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Now, for the determinant to be non-zero, the column given by entries b and
d must simply not equal the first column and not equal 0. For each of the
above three first-column possibilities, this leaves exactly 2 options for the
second column. So GL2(Z/2Z) has six elements, listed as follows:

A
1 1
0 1

B A
1 1
1 0

B A
0 1
1 0

B

A
1 0
0 1

B A
1 0
1 1

B A
0 1
1 1

B

This groups is not abelian. Behold:
A

1 1
0 1

B

=
A

1 1
1 0

B A
0 1
1 0

B

A
1 0
1 1

B

=
A

0 1
1 0

B A
1 1
1 0

B

So this is our first explicit example of a non-abelian group of order six.

Remark 15.2.14. It turns out that this is the smallest non-abelian group
possible.

15.3 Some useful facts about computations in
a group

We have so far seen examples of geometry (symmetries of mattresses) and of
algebra (the additive group of a ring, and the units of a ring). It is powerful

that such di�erent examples fit under the same umbrella of “group,” because
general facts about groups will apply in all of these settings. Let’s discover
some facts that are used all the time.

Proposition 15.3.1 (Cancellation law). Let G be a group. Suppose that
g, h, k are three elements for which gh = gk. Then h = k.

Likewise, if hg = kg, then h = k.

Remark 15.3.2. The above are sometimes called the left cancellation and
right cancellation laws. We will bundle the two and call the proposition a
single “cancellation law” for short.
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Proof. There exists a (unique) element g≠1 œ G for which gg≠1 = e and
g≠1g = e. Thus

gh = gk =∆ g≠1(gh) = g≠1(gk)
=∆ (g≠1g)h = (g≠1g)k
=∆ eh = ek

=∆ h = k.

The first implication is by “multiplying both sides by g≠1.” (We are applying
the multiplication function m to the pairs (g≠1, gh) and (g≠1, gk). That
gk = gh means the outputs are identical.) The second implication is the
associative property of the group operation, applied to both sides of the
equality. The next implication follows by definition of inverse. The last is by
definition of the identity element e.

A similar proof shows the right cancellation law:

hg = hk =∆ (hg)g≠1 = (kg)g≠1

=∆ h(gg≠1) = k(gg≠1)
=∆ he = ke

=∆ h = k.

Here is a useful corollary:

Corollary 15.3.3. Let G be a group. If g œ G is an element for which
g2 = g, then g = e.

Proof. If g2 = g, then we may write

gg = ge.

By the cancellation law, we conclude g = e.

Remark 15.3.4. In any setting with a binary operation, an element satis-
fying x2 = x is called an idempotent. (For example, a diagonal matrix whose
only diagonal entries are 0s and 1s is an idempotent matrix.) The corollary
says that in a group, the only idempotent element is the identity element.

The following says that the process of “taking inverses” reverses the order
of multiplication:
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Proposition 15.3.5. Let G be a group. For any g, h œ G, we have that
(gh)≠1 = h≠1g≠1.

Proof. Let x = h≠1g≠1. We must prove that x(gh) = e and (gh)x = e to
show that x is the inverse to gh. Observe:

x(gh) = (h≠1g≠1)(gh)
= (h≠1g≠1g)h
= h≠1(g≠1g)h
= h≠1eh

= h≠1h

= e. (15.3.0.1)

The first equality is the definition of x, the next two equalities follow from
the associative property of the group operation, and the last equalities are
by definition of inverse. Likewise we observe:

(gh)x = (gh)(h≠1g≠1)
= g(hh≠1g≠1)
= g(hh≠1)g≠1

= geg≠1

= gg≠1

= e. (15.3.0.2)

The following says that—even though the definition of an inverse to g
required the inverse to be both a left- and right- inverse—it su�ces to check
that an element inverts g on only one side to conclude that it inverts g from
both sides.

Proposition 15.3.6. Let G be a group. For any g, h œ G, we have that
gh = e if and only if hg = e. (In other words, any left inverse to g is
automatically a right inverse to g, and hence an inverse to g; and vice versa.)

Proof. Assume that h is an element for which gh = e. Then, by multiplying
both sides by h on the left, we have that hgh = h. By the right cancellation
law (multiplying by h≠1 on the right) we see thathg = e. A similar proof
shows that hg = e =∆ gh = e.
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15.4 Comparing groups
When studying rings, a ring homomorphism f : R æ S was a kind of func-
tion respecting ring structures (of addition and multiplication and multi-
plicative unit). A ring isomorphism was a ring homomorphism that was also
a bijection—and this articulated a sense in which the ring structure of R can
be made to look identical to that of S.

Likewise, we’ll want a group homomorphism to respect group operations,
and a group isomorphism to exhibit a way in which two groups look identical.
Definition 15.4.1. Let G and H be two groups. A function f : G æ H is
called a group homomorphism if for every g, gÕ œ G, we have that f(ggÕ) =
f(g)f(gÕ).

Recall that for a ring homomorphism, even though we only asked that +,
◊, and 1 be respected, it turned out further structures like additive inverse
and 0 are respected. The same is true of group homomorphisms:
Proposition 15.4.2. Suppose f : G æ H is a group homomorphism. Then:
(a) Let eg œ G and eH œ H be the identity elements. Then f(eG) = eH . (So

group homomorphisms automatically respect identity elements.)

(b) For any g œ G, f(g)≠1 = f(g≠1). (So group homomorphisms automati-
cally respect inverses.)

Proof. (a) We observe:

f(eG)f(eG) = f(eGeG) = f(eG)

where the first equality uses the fact that f is a group homomorphism, and
the last follows by applying the function f to the equality eGeG = eG. Then
f(eG) is an idempotent, but Corollary 15.3.3 tells us that the only idempotent
in a group H is the identity element of H. Hence f(eG) = eH .

(b) We observe the following:

f(g≠1)f(g) = f(g≠1g) = f(eG) = eH

where the first equality is by definition of group homomorphism, the next
equality is true by applying f to both sides of the equation g≠1g = e, and the
last equality is the first part of the proposition. This shows that f(g≠1) is a
left inverse to f(g). By proposition 15.3.6 —which shows that any one-sided
inverse is in fact a (two-sided) inverse—we see that f(g≠1) = (f(g))≠1.
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Finally, the following notion gives us a way to detect when two groups
behave indistinguishably:

Definition 15.4.3. We say that a group homomorphism f is a group iso-

morphism if f is a bijection.

Proposition 15.4.4. Let f : G æ H be a group isomorphism.

1. Then the inverse function to f is a group isomorphism.

2. Let f Õ : H æ K be another group isomorphism. Then f Õ ¶ f is also a
group isomorphism.

Remark 15.4.5. Let G and H be two groups. If there exists a group iso-
morphism from G to H, we say that G and H are isomorphic. However, you
should make a habit of remembering your favorite group isomorphisms. Just
remembering that G and H are isomorphic tells you there is some way to
view the two as equivalent; but without remembering the isomorphism itself,
you will not know how to view them as equivalent.

Here is a related issue. Every group G is isomorphic to itself, because the
function g ‘æ g is a function from G to itself that is a bijection and a homo-
morphism. But a group G can have many other interesting isomorphisms to
itself!

For example, let G = Z under addition. The operation n ‘æ ≠n is a
group isomorphism to itself.

15.4.1 The power of group isomorphisms
In Section 15.2.3 we saw the group GL2(Z/2Z). I told you then that it was
the smallest non-abelian group possible.

It turns out that there is another non-abelian group of order 6 (i.e., a non-
abelian group with 6 elements), written D6, defined to be the symmetries of
an equilateral triangle. Moreover, it turns out that D6 is isomorphic to
GL2(Z/2Z).

What would a group isomorphism f : D6 æ GL2(Z/2Z) do for us?
Well, the way that we would compute the group operation in D6 woudl be

geometric. Just as we composed rotations of a mattress to study the group
operation of the symmetry group of a mattress, we would futz around with
an equilateral triangle to understand how the triangle’s symmetries compose.
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On the other hand, the way to compute the group operation in GL2(Z/2Z)
is purely algebraic—it’s just matrix multiplication involving 0s and 1s.

The power of the group isomorphism f is that it allows you to compute
group operations in either of these settings, and be able to make conclusions
about the group operation in the other. If you’re a geometry guru, you love
it because you get to avoid multiplying matrices, and you also get to think
of a somewhat abstract 2-by-2 matrix with Z/2Z entries as behaving like a
geometric object—e.g., behaving like a rotation or reflection of a triangle.

Or, if you’re an algebra guru and if you also don’t have geometric in-
tuitions about things, you’re happy because you can learn about geometry
through doing simple computations of matrices.

(Note also how much easier it is to have a computer multiply matrices;
it’s more involved to try to represent geometric operations without using
matrices in some way.)

15.5 Exercises
Exercise 15.5.1. Let R be a ring. Recall that a zero divisor of R is a non-
zero element x œ R for which there exists some non-zero y œ R satisfying
xy = 0 or yx = 0.

(a) Show that if x is a zero divisor, then x cannot be a unit.

(b) Conversely, suppose that R is a ring for which 0 ”= 1 (so R has at least
two elements). Show that if x is a unit, then x cannot be a zero divisor.

Exercise 15.5.2. (a) Prove Proposition 15.4.4.

(b) Prove the analogous statement for rings.

Exercise 15.5.3. Let G and H be groups, and suppose they are isomorphic.
This intuitively means that G and H should look identical, but this intuition
is vague. Let’s see it play out.

Show the following:

1. G is abelian if and only if H is.

2. G contains an element g ”= eG for which g5 = eG if and only if H
contains an element h ”= eH for which h5 = eH . (eG and eH are the
identity elements of G and H, respectively.)
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3. Fix a group K. Then G is isomorphic to K if and only if H is isomorphic
to K.

Exercise 15.5.4. For the following examples of G and H, write down (i) all
group homomorphisms from G to H, and (ii) all group isomorphisms from
G to H.

(a) G = Z/2Z and H = Z/3Z (both under addition).

(b) G = H = Z/3Z (under addition).

(c) G = Z
◊ (the group of units of the ring Z) and H = Z/2Z.

(d) G = Q and H = Z (both under addition).

(e) G = Z and H = GL2(R).

(f) G = Z and H is any group.

Exercise 15.5.5. Complete Exercise 14.5.1.


