
Lecture 16

Examples of groups, II:
Products and Subgroups

16.1 Goals
1. Understand what the direct product of two groups is.

2. Understand what a subgroup is, and know some examples of subgroups

3. Begin to see examples of group isomorphisms

4. See that automorphisms form a group (true to our philosophy of sym-
metries)

16.2 Products
We have seen groups in geometric settings (symmetries of mattresses) and
algebraic settings (additive groups and groups of units coming from rings).

Today, we’ll see ways to construct, and look for, new groups out of groups
we already know.

Definition 16.2.1. Let G and H be groups. The product group, or direct

product of G and H is the set G◊H endowed with the following “component-
wise” multiplication:

(g, h)(gÕ, hÕ) := (ggÕ, hhÕ).
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We will not prove the following; you can prove it as an exercise if you are
curious.

Proposition 16.2.2. Let G and H be groups. Then the product group
G ◊ H is indeed a group.

However, for the record: You can check that the identity element of G◊H
is the element (eG, eH) and the inverse to (g, h) is (g≠1, h≠1).

Remark 16.2.3. You already knew about the set called G◊H. What you’re
seeing today is that there is a way to naturally define a group operation on
this set.

Remark 16.2.4. Using your previously knowledge of direct products: If G
and H are finite sets with #G and #H elements in each, then G ◊ H is a
finite set with (#G) ◊ (#H) elements.

Example 16.2.5. We have seen that R is a group under addition. Then the
direct product group R ◊ R has a group operation as follows:

(x, y) + (xÕ, yÕ) = (x + xÕ, y + yÕ).

This is the familiar vector addition in R
2. So you secretly have already been

playing with direct product groups.

Example 16.2.6. In the group Z/3Z ◊ Z/5Z, we have that

(2, 2) + (1, 1) = (0, 3)

Example 16.2.7. In the group Z ◊ GL2(R), we have that

(n,

A
a b
c d

B

)(nÕ,

A
aÕ bÕ

cÕ dÕ

B

) = (n + nÕ,

A
aaÕ + bcÕ abÕ + bdÕ

caÕ + dcÕ cbÕ + ddÕ

B

).

Example 16.2.8. Z/2Z◊Z/7Z is not isomorphic to Z/3Z◊Z/5Z because
the former has 14 elements, while the latter has 15 elements (hence there
could be no bijection between them, let alone a group isomorphism).

Example 16.2.9. Both Z/2Z◊Z/2Z and Z/4Z have four elements. So there
exists a bijection between these two sets. However, it turns out that these
two groups are not isomorphic (Exercise 16.4.1). This is our first example
showing that size alone does not characterize a group.
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For some reason, this group comes up so often that it gets a name:

Definition 16.2.10. The group Z/2Z◊Z/2Z is called the Klein four group.

Notation 16.2.11. When considering direct products of groups of the form
Z/nZ, it is very common to use the symbol ü (“direct sum”) instead of the
symbol ◊ (direct product). In this course, you do not need to worry about
the di�erence. But just know that if you see the notation

Z/nZ ü Z/mZ

in another textbook, the notation represents the exact same group as Z/nZ◊
Z/mZ.

However, a word of warning: An infinite direct sum—that is, the direct
sum of infinitely many abelian groups—is not the same as an infinite product
of groups. This has to do with the definitions of each, and we don’t give the
definition of an infinite direct sum.

16.3 Subgroups
Sometimes, we can find small groups sitting inside large groups.

Definition 16.3.1. Let G be a group, and H µ G a subset. We say that
the subset is a subgroup of G if the following holds:

1. e œ H (so H contains the identity element of G),

2. g œ H =∆ g≠1 œ H (so H is closed under taking inverses in G), and

3. g, gÕ œ H =∆ ggÕ œ H (so H is closed under the group operation).

Example 16.3.2 (The trivial subgroup.). Let G be any group, and let H =
{e} be the set containing only the identity element. Then H is a subgroup
of G. This is called the trivial subgroup.

Likewise, let H = G. Then H is a subgroup (so any group is a subgroup
of itself). This is also sometimes called a trivial subgroup of G, but less often.

Example 16.3.3. Let G = Z (under addition). Then the subset H = 2Z
consisting of all even integers is a subgroup. This is because 0 is an even
number (so H contains the identity element), the negative of an even number
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is even (so H is closed under taking inverses), and the sum of two even
numbers is even.

More generally, if n is any integer, then the subset
nZ

consisting of all multiplies of n is a subgroup.
Example 16.3.4. Let G = Q (under addition). Fix a positive integer n,
and define a subset

1
n
Z

to be the set of all rational numbers that can be written as a

n
for some integer

n. (For example, 0 can be written as 0
n

and 1 can be written as n

n
. Of course,

1
n

is also an element of 1
n
Z.)

Then 1
n
Z is a subgroup of Q.

Example 16.3.5. Recall that given a matrix A, its transpose is the matrix
AT whose (i, j)th entry is the (j, i)th entry of A. (When A is a square matrix,
you can visualize its transpose as obtained by “flipping” A about its diagonal.
This has the e�ect of turning the columns/rows of A into the rows/columns
of AT .)

We let
On(R)

denote the set of those invertible matrices for which A≠1 = AT . This is called
the orthogonal group, or real orthogonal group (with n often left implicit).

Then it turns out that On(R) is a subgroup of GLn(R) (Exercise 16.4.2).
Example 16.3.6. Recall that given a two-by-two matrix

A =
A

a b
c d

B

then the determinant of A is the real number ad ≠ bc. Let
SL2(R)

denote set of all matrices whose determinant is equal to 1. Then SL2(R) is
a subgroup of GL2(R).

More generally, one can define SLn(R) to be the set of all n-by-n matrices
with determinant equal to 1. (Because this is not a linear algebra class, I
won’t assume that you know how to define the determinant of a general
n-by-n matrix.) Then SLn(R) is a subgroup of GLn(R).

SLn(R) is called the special linear group, or the real special linear group.
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16.4 Exercises
Exercise 16.4.1. 1. Suppose that G is a group for which every element

g satisfies g2 = e. Prove that if H is isomorphic to G, then for every
element h œ H, h2 = eH .

2. Prove that Z/2Z ◊ Z/2Z is not isomorphic to Z/4Z.

Exercise 16.4.2. Prove that On(R) is a subgroup of GLn(R).

Exercise 16.4.3. Prove that SL2(R) is a subgroup of GL2(R). Hint: det(AB) =
det(A) det(B).

Exercise 16.4.4. Consider a 2-by-2 matrix

A =
A

a b
c d

B

.

Prove that A œ O2(R) if and only if all of the following are satisfied:

(a) a2 +c2 = 1 and b2 +d2 = 1 (so that the columns of A are vectors of norm
1).

(b) The inner product of the vector (a, c) with the vector (b, d) is zero (so
that the columns of A are orthogonal to each other).

(In other words, the columns of A are orthonormal. )
If you like, you can prove more generally that an n-by-n matrix A is an

element of On(R) if and only if the columns of A are orthonomal.

Exercise 16.4.5. Fix an integer n Ø 1, and consider the group nZ (Exam-
ple 16.3.3).

(a) Show that nZ is isomorphic to Z (as groups).

(b) Let m be any integer Ø 1. Show that mZ and nZ are isomorphic.

Exercise 16.4.6. Suppose that G is a group, and g is an element of G
satisfying the following: There exists some h œ G so that hn = g.

(a) Let f : G æ K be a group isomorphism. Prove that there exists an
element k œ K for which kn = „(g).
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(b) Prove that Z is not isomorphic to Q.

By the way: Z and Q are another example of two groups with the same
cardinality that are not isomorphic.

Exercise 16.4.7. Recall the Klein four group (Definition 16.2.10).

(a) Write out the group operation table of the Klein four group. (This will
be a 4-by-4 “addition table.”)

(b) Show that the Klein four-group is isomorphic to the symmetries of a
(non-square) mattress (Section 14.4).


