
Lecture 17

Group actions

17.1 Goals
1. Understand the definition of a group action.

2. See examples of group actions.

3. Understand that the automorphisms of an object always acts on the
object.

4. Understand that the above is a “universal example,” meaning any other
group action can be recast as a homomorphism to the automorphism
group.

5. Become comfortable with the notion of order of a group, and order of
an element of a group.

17.2 Group actions
I have, sneakily, already used the idea of actions when speaking about ma-
trices. Concretely, I saw that “two-by-two matrices act on R

2.” At the time,
you probably inferred this means that a 2-by-2 matrix knows how to take in
a given two-dimensional vectors and output two-dimensional vector.

This concept generalizes in the following way. Let X be any set. Then
there may be a way in which some group G acts on X.
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196 LECTURE 17. GROUP ACTIONS

Example 17.2.1. Let G be the set of symmetries of a shape X. (For ex-
ample, X might be a non-square mattress, and G might be its four-element
group of symmetries). Then certainly, given a symmetry g œ G, g operates
on the shape X, so every point x œ X gets sent to some point gx œ X.

It would not be a mistake to say that in most interactions between geom-
etry and group theory, we study groups for the sake of their potential actions
on geometric objects. So let’s finally define what a group action is.

Definition 17.2.2 (Group action). Let G be a group and X a set. A left

group action, or group action for short, is a function G ◊ X æ X—where we
will denote the image of (g, x) by the notation gx—satisfying the following:

1. For every x œ X, we have ex = x.

2. For every g, h, œ G and x œ X, we have g(hx) = (gh)x.

Remark 17.2.3. Consider a function G ◊ X æ X. If you fix an element
g œ G, we obtain a function X æ X given by x ‘æ gx. So you can think of a
group action as a collection of transformations from X to itself, where each
g œ G defines a transformation.

Remark 17.2.4. The first condition (1) says that the identity element acts
by “doing nothing” on all elements of X. Let’s carefully interpret con-
ditin (2). Given an element x, we get a new element hx œ X. We could
then compute where g sends this element. On the other hand, we could have
first multiplied gh to get an element of G. Then we could ask where gh sends
x. The condition demands that x ends up—regardless of which journey it
takes—at the same point.

Remark 17.2.5. There is also the notion of a right group action, which is
given by a function X ◊ G æ X satisfying xe = x and (xg)h = x(gh). As
you will prove in Exercise 17.5.5, any left group action gives rise to a right
group action by declaring xg := g≠1x; and vice versa.

Example 17.2.6. Let G be any group and X any set. Consider the function
G ◊ X æ X which sends the pair (g, x) to x. In other words, this gx = x for
all g, x. You can check this is a group action. It is called the trivial group
action on X.
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Example 17.2.7. Let G = GL2(R) be the group of 2-by-2 invertible matri-
ces. Let X = R

2. Then we have an action GL2(R) ◊ R
2 æ R

2 by sending
a pair (A, x̨) to Ax̨. In other words, matrix multiplication (by invertible
matrices) is a group action on R

2.

Example 17.2.8. Here is a fun one. Consider an equilateral triangle T , and
let G be the group of symmetries of T (preserving all distances). As we’ve
discussed before, any such symmetry must send vertices to vertices. So let
V be the set of vertices of T . V consists of 3 elements. I claim that G has
an action on V .

Indeed, if g is a symmetry of T and v is a vertex of v, let gv = g(v) denote
the vertex that v is sent to under g. Then the identity symmetry e of course
doesn’t move vertices, so ev = e(v) = v. Moreover, gh is the symmetry
called “do h, and then do g” so we have that (gh)v = g(h(v)) = g · (hv).
This proves that the function

G ◊ V æ V, (g, v) ‘æ g(v)

is a group action.
In fact, there are more variations on this theme. Let E be the set of edges

of T . Then G also acts on E, as any symmetry of T will send edges to edges.

Example 17.2.9. More generally, if P is any polygon and G is the group of
symmetries of P (preserving all distances), G acts on the set of vertices of
P . If E is the set of edges of P , then G acts on E.

Even more generally, if P is now a polyhedron, and G its group of sym-
metries (preserving distances), then G will act on the set of faces of P .

17.3 Symmetric groups
There are some groups that tautologically act on some sets.

Definition 17.3.1. Let X be a set. We let Aut(X) denote the set of bijec-
tions from X to itself. We call Aut(X) the group of automorphisms of X,
and sometimes set automorphisms of X. Aut(X) is also sometimes called
the symmetric group on X.

When X is the set {1, 2, . . . , n}, it is common to write Sn instead of
Aut(X). Sn is called the symmetric group on n letters.
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We will justify the word “group” after these examples:

Example 17.3.2. Let X = {1, 2}. Then there are exactly two elements of
Aut(X) = S2. A function called idX , which is defined by

idX(1) = 1, idX(2) = 2.

(So for all x œ X, we declare idX(x) = x.) This is called the identity function

from X to itself.
The other element of S2 is the “swap,” which I’ll call ‡ for no good reason.

This function is defined by

‡(1) = 2, ‡(2) = 1.

The function ‡ is an injection (because the two elements of X are sent to
distinct elements) and a surjection (because ‡ hits all elements of X) and
hence a bijection. You can check that ‡ is its own inverse.

Example 17.3.3. Let X = {1, 2, 3}. There are exactly six elements of
Aut(X) = S3. The easiest to understand is idX , the identity function—it is
defined by idX(x) = x (for all x œ X). The other 5 are specified by permuting
elements of X.

Let’s understand why there are 6 bijections from X to itself. To specify
a bijection · : X æ X, one must specify ·(1). There are, of course, three
options for ·(1). (The options are 1, 2, 3) Now let’s specify ·(2). If we
demand · to be an injection, one now has only two remaining choices for
·(2). Finally, ·(3) is the last remaining element of X not hit by ·(1), ·(2).
Thus we see

3 ◊ 2 ◊ 1 = 6

di�erent bijections from X to itself.

The above examples generalize:

Proposition 17.3.4. Sn is a set with n! = n◊ (n≠1)◊ . . .◊2◊1 elements.

Now let’s justify the fact that we are calling Aut(X) a group.

Proposition 17.3.5. For any set X, Aut(X) is a group under composition.
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Proof. To be clear, given two elements f, g œ Aut(X), the group operation
is given by fg = f ¶ g.

First, let’s make sure this is indeed a function that takes two automor-
phisms of X and outputs an automorphism of X (as opposed to just another
function). Well, if f and g are bijections, then so is their composition f ¶ g.

Now let us prove that this binary operation satisfies the three group
properties.

First, the identity element is the identity function: idX . Concretely,
this is the function idX(x) = x. Then for any f œ Aut(X), we have that
(f ¶ idX)(x) = f(idX(x)) = f(x). Thus, f ¶ id = f . Likewise, (idX ¶f)(x) =
idX(f(x)) = f(x), so idx ¶f = f . We have shown that idX is an identity
element for the binary operation of composition.

Next, inverses. Given f œ Aut(X), we know there exists an inverse
function f≠1 because f is a bijection. Then (f ¶ f≠1)(x) = f(f≠1(x)) = x
by definition of inverse; this shows f ¶ f≠1 = idX . Similarly, (f≠1 ¶ f)(x) =
f≠1(f(x)) = x, so f≠1 ¶ f = idX . This shows f≠1 is indeed the inverse of f
under the binary operation of composition.

Finally, function composition is always associative: f ¶(g¶h) = (f ¶g)¶h.
We have finished showing that Aut(X) is a group.

I began this section by saying that some groups tautologically have an
action on some sets. We now see why I said that:
Example 17.3.6. Let X be a set. Then Aut(X) acts on X, by declaring

Aut(X) ◊ X æ X, (f, x) ‘æ f(x).
Put another way, we declare fx = f(x). The axioms of a group action are
checked straightforwardly:

idX x = idX(x) = x

(by definition of the function idX), and finally
(f ¶ g)x = (f ¶ g)(x) = f(g(x)) = f · (gx).

Moreover, Aut(X) is the “universal” example of a group acting on X.
That I am able to articulate this is another use of group homomorphisms.1

1
Early on in one’s math career, it’s hard to appreciate the utility of certain frameworks.

Group homomorphisms, just like ring homomorphisms, are useful because they can probe

properties of one group using another group. But even more importantly, group homomor-

phisms give us a language for organizing natural phenomena we see in the mathermatical

world.
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The next proposition says that an action of G on X is the same thing as a
group homomorphism G æ Aut(X).

Proposition 17.3.7. Fix a group action G ◊ X æ X. By sending every
g œ G to the function fg : x ‘æ gx, we have a group homomorphism

G æ Aut(X), g ‘æ fg.

Moreover, this function (from the set of all group actions, to the set of all
group homomorphisms) is a bijection. In other words, there is a one-to-one
correspondence between group actions of G on X, and group homomorphisms
from G to Aut(X).

Proof. Let’s first show that fg is indeed an element of Aut(X). For this, let
us note that

(fg≠1 ¶ fg)(x)fg≠1(fg(x)) = g≠1 · gx = (g≠1g)x = ex = x.

(The first equality is by the definition of f•, the next is by the definition of
group action, the next is by the definition of g≠1, and the last is by definition
of group action.) The above equalities prove that fg≠1 ¶ fg = idX . One can
likewise show that fg ¶ fg≠1 = idX , so fg is a bijection (with inverse fg≠1 .
This shows fg is indeed in Aut(X). In particular, we have verified indeed
that the assignment g ‘æ fg is a function from G to Aut(X).

Now let us show that this is a group homomorphism. For this, we must
show that fgh = fg ¶ fh. This follows by definition of group action:

fgh(x) = (gh)(x) = g · hx = fg(hx) = fg(fh(x)) = (fg ¶ fh)(x).

Because the above equality holds for all x, fgh = fg ¶ fh.
To prove the last statement, we will provide an inverse to the construction.

Let „ : G æ Aut(X) be a homomorphism. Then we define a function
G ◊ X æ X by (g, x) ‘æ „(g)(x). In other words, gx = „(g)(x). We leave it
to the reader to verify that this assignment is an inverse assignment.

17.4 Order
Every lecture in the “groups” unit, my hope is to give examples, and also to
illustrate some general terminology and facts we can use to study all groups.
Today we’ll talk about the notion of order.
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Definition 17.4.1 (Order). Let G be a finite group. The order of G is the
number of elements in G. When G contains exactly n elements, we say that
G is a group of order n.

When G is not finite, we often say that G is a group of infinite order.
We may sometime say “countable order” or “uncountable order” for groups
of countable or uncountable cardinality, respectively.

Example 17.4.2. Z/nZ is a group of order n.
If X is a finite set of k elements, Aut(X) is a group of order k!.

The word order is also used not just to describe groups, but also elements
of a group, in the following way:

Definition 17.4.3 (Order of an element). Let G be a group and g œ G. The
smallest positive integer n Ø 1 for which gn = e is called the order of g. We
say that g is an element of order n.

If there is no such integer (so that gn never equals e regardless of n Ø 1)
we say that g is an element of infinite order.

Example 17.4.4. The identity element of a group is the only element of
order 1.

Example 17.4.5. In Z, every element (except 0) has infinite order.

Example 17.4.6. In Z/nZ, the element 1 has order n.

Example 17.4.7. In Z/6Z, 1 has order 6, 2 and 4 have order 3, and 3 has
order 2. (You should check this.)

More generally, if k œ Z/6Z and we represent k as a number between 0
and n ≠ 1, then the order of k is lcm(k, n)/k, where lcm(k, n) is the least
common multiple of k and n.

Remark 17.4.8. We saw in Exercise 16.4.6 that udnerstanding orders of
elements can be useful. For example, if G is isomorphic to H, then G has
elements of order 5 if and only if H does. (And 5 is not special here.)

17.5 Exercises
Exercise 17.5.1. Find the orders of the following groups:

(a) GL2(Z/2Z)
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(b) GL2(Z/2Z) ◊ GL2(Z/2Z)

(c) Z/2Z ◊ GL2(Z/2Z)

(d) Sn ◊ Z/(n + 1)Z.

Exercise 17.5.2. Find the order of the element 3 (which is our lazy notation
for [3]) in each of the following groups:

1. Z/2Z

2. Z/3Z

3. Z/4Z

4. Z/6Z

5. Z/7Z

6. Z/2021Z

Exercise 17.5.3. Find the order of the element
A

1 1
0 1

B

(which is our lazy

notation for
A

[1] [1]
[0] [1]

B

) in each of the following groups:

1. GL2(Z/2Z)

2. GL2(Z/3Z)

3. GL2(Z/6Z)

4. GL2(Z/2021Z)

Exercise 17.5.4. For each of the following examples of G, X and function
G ◊ X æ X, say whether the function is a group action. If an example is
not a group action, say which property (or properties) of a group action is
(are) violated.

1. G = X, and (g, x) ‘æ gx is group multiplication.

2. G = X, and (g, x) ‘æ g≠1x is group multiplication of x with g≠1.
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3. G = Z, X = {0, 1}, and (n, x) ‘æ x if n is even, while (n, x) ‘æ the
unique non-x element of X when n is odd.

4. G = GL2(R), X = R. For any A œ GL2(R) and x œ R, declare (A, x)

to be sent to the x1-coordinate of the vector A

A
x
0

B

.

5. G = X, and (g, x) ‘æ gxg≠1.

6. For any function g : Y æ Y and subset A µ Y , define g(A) =
{g(a) | a œ A}. Now let X = P(Y ) be the power set of Y (that is,
X is the set of all subsets of Y ). For G = Aut(Y ), consider the func-
tion G ◊ X æ X given by (g, A) ‘æ g(A).

Exercise 17.5.5. Suppose one has a left group action G◊X æ X. Define a
function X ◊ G æ X by (x, g) ‘æ g≠1x (where g≠1x uses the given left group
action). Prove that this function is a right group action (Remark 17.2.5).

Conversely, given a right group action X ◊ G æ X, shows that the
assignment (g, x) ‘æ xg≠1 defines a left group action.
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