
Lecture 18

Dihedral group computations
and symmetric group
computations

18.1 Goals
1. See the dihedral group D2n—symmetries of a regular n-gon.

2. Understand that the symmetries of a regular n-gon consist of n rota-
tions and n reflections.

3. Understand how to compute group operations in D2n

4. Learn cycle notation to represent elements of Sn

18.2 So far
So far, we’ve seen:

(a) Examples of groups

(1) Additive groups of rings: Z,Q,R,C, Mn(R).
(2) Groups of units of rings: Z

◊,Q◊,R◊,C◊, GLn(R).
(3) Groups of geometric symmetries: Mattress group, square mattress

group.
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(4) Groups of “set” symmetries: Symmetric group Sn and Aut(X).

(5) Groups you can “find” inside of other groups (subgroups): On(R) µ
GLn(R), SLn(R) µ GLn(R).

(6) Groups you can build out of other groups: Product groups.

(b) Ways to find relationships between groups

(1) Group homomorphisms

(2) Group isomorphisms (which tell us ways in which two groups are
“equivalent.”)

(c) Properties of groups

(1) Cyclic

(2) Order of a group

(3) Order of an element

Today, we’re going to learn one more important example of a group—the
dihedral group—and then learn about how to represent elements of Sn. We’ll
begin to practice doing computations in both these groups.

18.3 Dihedral groups
Let’s continue with our tour of groups. There is a class of groups, the dihedral

groups, which are among the simplest examples of groups.

18.3.1 Regular n-gon
Let’s first define a notion we probably all know, but that I’d like to make
explicit.

Definition 18.3.1. A polygon is called regular if all sides have the same
length, and all angles have the same measure. A regular polygon with n
sides (hence n vertices is called a regular n-gon.
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Remark 18.3.2. Below are drawings of a regular 3-gon, 4-gon, 5-gon, 6-gon,
and 7-gon.

A regular 3-gon is otherwise known as an isosceles triangle. A regular 4-gon
is known as a square. A regular 5-gon is also known as a regular pentagon,
and so forth.

Remark 18.3.3. It is important that all edges have the same length and all
angles have the same measure.

As an example, any non-square rhombus is a parallelogram whose edges
have equal length, but whose angles are not all congruent. Likewise, a non-
square rectangle is a parallelogram whose angles are equal in measure, but
whose edges are not of equal length. We exclude such examples—as you
might be able to intuit, these shapes are not as “symmetric” as squares.

Construction 18.3.4 (Construction of a regular n-gon). First, let’s con-
struct a regular n-gon—to see that a regular n-gon exists for any n Ø 3.

Given n, draw points on the unit circle forming angles k(2fi)/n radians
with the positive x-axis. (Do this for every k between 0 and n ≠ 1.) As an
example, if n = 4, you would draw points on the unit circle at angles 0, 90
degrees, 180 degrees, and 270 degrees. You have drawn a total of n points.

Now, draw the line segment between each successive pair of points. These
line segments form the edges of a polygon.

Proposition 18.3.5. For all n Ø 3, the polygon in Construction 18.3.4 is a
regular n-gon.

Proof. The construction above produces a polygon with n vertices (hence n
edges). So it remains to see that the polygon is regular.

Let’s observe that “rotating the plane about the origin” by any amount
is an operation that preserves all distances. (If you take a segment of length
l, and rotate the plane, the image of the original segment is still a segment
of length l.) Moreover, rotation preserves sizes of angles. That is, if A is
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an angle, and if you rotate the plane by some amount, the image of A is an
angle of the same measure as A.

We can apply this observation by noting that the polygon from Construc-
tion 18.3.4 has a rotational symmetry. To be concrete, let’s call the polygon
from the construction P . If you rotate the plane by (2fi)/n radians, the image
of P is a polygon with the same set of vertices—so P ! Therefore, by taking
v0 to be the vertex of P formed at 0 radians, and vk to be the vertex of the
polygon at k(2fi)/n radians, a rotation by k(2fi/n) takes v0 to vk; this shows
that the angle measures of our polygon at vk and v0 are equal. Likewise, the
edge from v0 to v1 can be taken to the edge from vk to vk+1 by the same
rotation. This shows that these two edges have the same length. Because k
can be taken to be any integer, we see that all angles and all edges have the
same length. Thus, P is regular.

18.3.2 The dihedral group
Definition 18.3.6. By a symmetry of a regular n-gon, we mean a function
from a regular n-gon to itself which preserves all distances.

Remark 18.3.7. Preserving all distances is enough to guarantee that a
symmetry sends vertices to vertices. We have seen why before, but let’s
see it again here to save some page-flipping. Let P be a regular polygon
and f : P æ P a function. Let d be the distance function—given any two
points p and pÕ on P , d(p, pÕ) is the distance between the two points. Then the
distance function d(p, pÕ) is maximized when p and pÕ are both vertices, hence
if f preserves distance—meaning d(f(p), f(pÕ)) = d(p, pÕ) for all p, pÕ œ P—it
must be that whenever p and pÕ are vertices, f(p) and f(pÕ) are both vertices.

As a consequence, a symmetry of a polygon sends edges to edges. And
because the image of an edge is determined completely by the image of its
endpoints, one can understand what a symmetry of P does entirely by un-
derstanding what it does on vertices.

Remark 18.3.8. Let P and P Õ be two regular n-gons (for the same n).
Then there is a bijection g : P æ P Õ which preserves distance up to a single
scaling factor (and preserves all angles). We then have a group isomorphism
from the set of symmetries of P to the set of symmetries of P Õ. Indeed,
given a symmetry f : P Õ æ P Õ, the function g≠1fg is a symmetry of P . The
assignment

f ‘æ g≠1fg
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is the desired group isomorphism.
In other words, even if you have two non-identical regular n-gons (mean-

ing they may consist of di�erent points), the group of symmetries of both
are equivalent (meaning they are group isomorphic).

Thus, to understand the group of symmetries of a given regular n-gon
is to understand the group of symmetries of any regular n-gon. For this
reason, we will often just assume our regular n-gon to be the one constructed
in Construction 18.3.4.

The previous remark says that the following notation, and the use of the
word “the,” is justified:

Notation 18.3.9. We let D2n be the group of symmetries of a regular n-gon.
We call it the dihedral group of order 2n.

For concreteness, we will often take D2n to be the group of symmetries
of the specific regular n-gon in Construction 18.3.4.

Example 18.3.10. So D6 is the set of symmetries of an isosceles triangles.
And D8 is the group of symmetries of a square.

Here is why—even though we deal with an n-gon—the subscript is 2n: It
reminds us how many elements are in the group.

Proposition 18.3.11. There are exactly 2n symmetries of the regular n-gon.

Remark 18.3.12 (Any symmetry is determined by what it does on v0 and
v1.). Let P be the regular n-gon from Construction 18.3.4 and let f : P æ P
be a symmetry of P . By Remark 18.3.7, f is determined completely by what
it does on vertices. I now claim that f is determined completely by what it
does on two adjacent vertices. For this, let’s consider the vertices v0 and v1.
Then f(v0) = vk for some k; and because f preserves distance, f(v1) must
equal either vk+1 or vk≠1. Moreover, the image of v0 and v1 determines the
images of all other vertices, as if f(v1) = vk+1, then f(vkÕ) = vk+kÕ for all kÕ.
Likewise, if f(v1) = vk≠1, then f(vkÕ) = vk≠kÕ . This shows the claim.

Remark 18.3.13 (Rotations and reflections). Before proving Proposition 18.3.11,
let us see there are at least 2n symmetries of a regular n-gon P . First, there
are n possible symmetries given by rotation—namely, rotation by 0, 2fi/n,
2(2fi)/n, 3(2fi)/n, . . ., (n ≠ 1)(2fi)/n radians. (Rotating by 0 radians is the
“do nothing” symmetry, or the identity element in the group of symmetries.)
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Note that rotation by k(2fi)/n radians takes v0 to the vertex vk, and v1 to
the vertex vk+1.

There are n other symmetries, all given by reflections. But to describe
them requires understanding n-gons for even n and for odd n separately.

For any k with 0 Æ k Æ n ≠ 1, let lk be the line passing through vk

and bisecting the angle at vk. When n is even, lk passes through the vertex
vk+(n/2). When n is odd, lk bisects the edge opposite vk.

Likewise, for any 0 Æ k Æ n ≠ 1, let ek be the perpendicular bisector to
the edge between vk and vk+1.

Reflection about lk is a symmetry of the regular n-gon. So is reflection
about ek. While it seems we thus have 2n reflection symmetries (reflection
about l0, l1, l2, . . . , ln≠1 and e0, e1, . . . , en≠1) it turns out some of these sym-
metries are equal to each other.

Reflection about lk symmetry sends v0 to v2k (where 2k is to be under-
stood as an integer modulo n) and v1 to v2k≠1. When n is odd, each value
of k determines a distinct symmetry of the regular n-gon; so reflection about
l0, l1, . . . , ln≠1 produces the n distinct symmetries we desire. On the other
hand, when n is odd, ek is the same line as lk+(n+1)/2, so no reflection about
ek is a distinct symmetry from reflection about lk.

When n is even, we note that lk and lk+(n/2) are the same line, so reflecting
about the lk only produces n/2 new symmetries. However, when n is even,
no ek is equal to any lkÕ (as the ek do not intersect any vertices). Moreover,
reflection about ek is equal to reflection about ek+(n/2), so we have n/2 distinct
reflections about the ek lines. In sum, we have n reflections of a regular
polygon with an even number of edges: n/2 are given by reflecting about
lines bisecting angles, and n/2 by reflecting about perpendicular bisectors of
edges.

Proof of Proposition 18.3.11. By Remark 18.3.12, any symmetry of a regular
n-gon is determined completely by what the symmetry does on two adjacent
vertices. In particular, there are at most 2n possible symmetries of P . (There
are n choices for where v0 is sent by f , and two choices thereafter of where
v1 is sent.)

By Remark 18.3.13, there are at least 2n symmetries of a regular n-
gon (given by n rotations and n reflections). Thus, there are exactly 2n
symmetries.

Remark 18.3.14. The D stands for “dihedral.” Remember that polyhe-
dra are shapes made of polygons; they typically are embedded in three-
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dimensional shape. A “dihedron” is supposed to be a polyhedron with only
two faces, which is quite a degenerate setting. In our context, whoever came
up with the word “dihedral group” is imagining that our regular polygon is
actually an “incredibly thin” polyhedron with only two faces (each face being
the polygon). What we have referred to as a reflection of the polygon can be
imagined as flipping this dihedron so that the two faces are exchanged.

18.3.3 Pictures for D8

For fun, let’s see exactly what D8—the group symmetries of a square—looks
like.

Here is a picture of the square, constructed as in Construction 18.3.4,
with vertices labeled:

v1

v2

v3

v0

(The red circle is the unit circle.) Now let R denote rotation by 90 degrees
counterclockwise. Here is a drawing of where the vertices v0, . . . , v3 end up
upon repeated applications of R:

R(v3)

R(v0)

R(v1)

R(v2)

R2(v3)

R2(v0)

R2(v1)

R2(v2) R3(v3)

R3(v0)

R3(v1)

R3(v2)

Now, using the notation of Remark 18.3.13, we let Lk denote reflection about
the line lk, and Ek reflection about the line ek. Below are pictures of where
the vertices are sent under these symmetries:
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L0(v0)

L0(v3)

L0(v2)

L0(v1)

L1(v2)

L1(v1)

L1(v0)

L1(v3)

E0(v1)

E0(v0)

E0(v3)

E0(v2)

E1(v3)

E1(v2)

E1(v1)

E1(v0)

Note that we have equalities

L0 = L2 L1 = L3 E0 = E2 E1 = E3

so we do not draw L2, L3, E2, E3. In other words, D8 as a set can be written
as follows:

D8 = {e, R, R2, R3, L0, L1, E0, E1}.

There are indeed 8 elements. The first four listed are rotations; the last four
are reflections.

Example 18.3.15. Let’s interpret some of the drawings above. The first
drawing tells us that R (rotation by 90 degrees) is a function from the square
to the square having the following e�ects on vertices:

R(v0) = v1, R(v1) = v2, R(v2) = v3, R(v3) = v0.

The last drawing tells us that E1 (reflection about the perpendicular bisector
to the edge from v1 to v2) has following e�ects on vertices:

E1(v0) = v3, E1(v1) = v2, E1(v2) = v1, E1(v3) = v0.

Let us compose these two functions in both ways. For example, what is
E1 ¶ R? We see from the above formulas that

(E1 ¶ R)(v0) = E1(R(v0)) = E1(v1) = v2.
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Computing for all four vertices, and denoting E1 ¶ R by the more compact
E1R, we find:

E1R(v0) = v2, E1R(v1) = v1, E1R(v2) = v0, E1R(v3) = v3.
(18.3.3.1)

Staring at (18.3.3.1), we have discovered that E1R is a symmetry of the
square that fixes (i.e., does not move) v1 and v3, but swaps v0 and v2. This
is precisely the reflection about the line l1 (passing through v1 and v3), hence
the symmetry we have called L1. So these computations finally yield the
relation

E1R = L1.

In fact, we can also compute RE1 (you should check the work here!) and
find:

RE1(v0) = v0, RE1(v1) = v3, RE1(v2) = v2, RE1(v3) = v1.

This says RE1 is a symmetry that fixes v0 and v2, but swaps v1 and v3. In
other words, this is a reflection about the line l0 (passing through v0 and v2),
hence

RE1 = L0.

Notice that we have discovered that D8 is not abelian, as RE1 ”= E1R.

18.3.4 The upshot
We have set up notation for elements of D2n—an element is some power Ri

of a rotation by 2fi/n, or some reflection Li or Ei about the line li or ei.
While the notation of R, E, L is not standard outside of this course, we’ll use
these symbols so that we as a class have a convention for what we are talking
about.

18.4 Computations in Sn

Having a very broad understanding of all the symmetries of the regular n-gon
allowed us to write down elements of D2n is a systematic way. Likewise, we’ll
now develop an understanding of the bijections of the set n = {1, . . . , n} to
itself. This will allow us to write down elements of Sn succinctly.
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18.4.1 Writing cycles
Let’s set n = 5. It’s a big enough number that bijections are pretty com-
plicated (there are 120 of them!) but small enough that we can see what’s
going on.

For the sake of having an example, consider the following bijection „ from
n to itself:

„(1) = 3, „(2) = 4, „(3) = 5, „(4) = 2, „(5) = 1.
(18.4.1.1)

As you can tell already, it’s a bit annoying to process what this bijection
does. It sends 1 to 3, it sends 2 to 4, et cetera, but so what? Moreover, do
we really want to spend a whole line of text encoding a bijection? We would
like a more e�cient methodology and notation—just as Rn, Ek, and Lk were
ways to encode a symmetry of a regular polygon.

Here’s a fun way to start investigating a bijection „ (and, in fact, any
function from a set to itself): What happens to an element when you apply
„ to it over an over?

For example, the element 1 takes the following journey:

1 „‘≠æ 3 „‘≠æ 5 „‘≠æ 1.

Explicitly,

„(1) = 3, „(„(1)) = 5, „(„(„(1))) = 1.

Let us encode this journey in the following succinct notation:

(135).

This is called cycle notation, and it encodes the “cycle” (i.e., journey) that
the number 1 takes under iterated applications of „. The cycle (135) is
notation telling us that we are considering a function that sends 1 to 3, 3 to
5, and 5 back to 1.

Using the same example of „ from (18.4.1.1), we can also draw the cycle
of the number 2:

(24).

This notation says that 2 is sent to 4, and then 4 is sent back to 2.
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18.4.2 Cycle notation for a bijection
Now, to encode the function „ itself, we just put the cycles together:

(135)(24)

Believe it or not, this very short, succinct sequence of symbols (135)(24)
completely encapsulates the bijection „.
Remark 18.4.1. Cycle notation leaves some freedoms. For example, the
following are all equivalent ways to write the same cycle:

(135), (351), (513)

as they all encode some function that sends 3 to 5, 5 to 1, and 1 to 3. However,
note that the cycle (153) is not equivalent to any of the above three. After
all, (153) is a cycle for a function that sends 1 to 5; but the above three
cycles depict a function that sends 1 to 3 instead.

There is no reason to prefer any of the above three cycles over the oth-
ers. However, it is often etiquette to begin a cycle with the lowest number
appearing in the cycle. So (135) is often preferred over writing (351) or (513).

Here is another freedom: The notations

(135)(24) and (24)(135)

also represent the same function „ from before. Which is to say, when writ-
ing down the cycles of a bijection, there is typically no preference given to
the order in which one orders the cycles. However, as before, it is often eti-
quette to write down the cycles with the smallest elements appearing first,
so (135)(24) would be preferred over (24)(135).
Convention 18.4.2. When „(i) = i, it is natural to write (i) for the cycle
containing i. Because mathematicians are so lazy, when writing down the
cycle notation for „, they often leave out (i).

In other words, if some number i does not appear in the cycle notation
for a bijection, this means the bijection sends i to itself.
Example 18.4.3. Consider the bijection

„(1) = 2, „(2) = 3, „(3) = 5, „(4) = 4, „(5) = 1.

While one could write (1235)(4) for the cycle notation representing „, it is
more common to simply write „ as

(1235).
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Example 18.4.4. Let „ : 7 æ 7 be a bijection whose cycle notation is

(136)(47).

Then—because 2 and 5 do not appear in the cycle notation—we know that
„(2) = 2 and „(5) = 5. We may further read o� from the cycle notation
what „ does on all other elements of 7:

„(1) = 3, „(3) = 6, „(4) = 7, „(6) = 1, „(7) = 4.

Example 18.4.5. No suppose we are just given the cycle notation

(136)(47).

The notation alone does not tell us what the domain (and codomain) of
the corresponding bijection is. For example, it may well be that this cycle
notation represents a bijection from 9 to 9, in which case the corresponding
bijection fixes 8 and 9 (along with 2 and 5). Despite this ambiguity, one may
appreciate that the above notation is far shorter than having to write out
the clunkier

“(135)(2)(47)(5)(8)(9).ÕÕ

Example 18.4.6 (The identity element). So, how about the identity bijec-
tion that sends i ‘æ i? (This is the bijection that sends every element to
itself.) Confusingly, the most common convention is to depict this bijection
by the following cycle notation:

().
That’s write, () is the notation for the identity function. Depending on the
textbook, you may also see this being written as

e

(because it is the unit of Sn) or as

id

for “identity.”

Example 18.4.7. Let „ and Â be elements of S5 for which

„ = (135)(24)
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and
Â = (314).

Let us compute „Â and Â„. To compute „Â, otherwise know as the compo-
sition „ ¶ Â, we proceed as follows:

(„ ¶ Â)(1) = „(Â(1)) = „(4) = 2.

Note that to compute Â(1), we looked at the cycle notation for Â and noted
that Â sends 1 to 4. Likewise, to compute „(4), we looked at the cycle
notation for „ to learn that „ sends 4 to 2.

This tells us we can begin the cycle notation for „Â by writing “(12”. To
write the next term, we compute

(„ ¶ Â)(2) = „(Â(2)) = „(2) = 4.

Above, because 2 does not appear in the cycle notation of Â, we know that
Â(2) = 2. So „Â sends 2 to 4, and we can continue our cycle notation for „Â
by writing “(124”. We continue by computing „Â(4):

(„Â)(4) = „(Â(4)) = „(3) = 5.

So we have “(1245” and we now compute:

„(Â(5)) = „(5) = 1.

This ends our cycle because 1 already appears in our cycle; so we have
compute that „Â’s cycle notation contains the cycle (1245).

Now, we may confirm that „Â(3) = 3, to express the composite function
„Â via the following cycle notation:

„Â = (1245).

Let us compute Â„ as well:

Â(„(1)) = Â(3) = 1.

So Â„ fixes 1, meaning we could write (1), or just leave o� (1) from the cycle
notation for Â„. Since we have computed the (trivial) cycle containing 1, let
us now compute the cycle containing 2:

Â(„(2)) = Â(4) = 3. Â(„(3)) = Â(5) = 5. Â(„(5)) = Â(1) = 4. Â(„(4)) = Â(2) = 2.
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So the cycle containing 2 is given by (2354). We conclude

Â„ = (2354).

Or, purely in cycle notation, we have:

(135)(24) ¶ (314) = (1245)

and
(314) ¶ (135)(24) = (2354).

18.5 Exercises
Exercise 18.5.1. The following are bijections from 7 = {1, 2, 3, 4, 5, 6, 7} to
itself. Write a cycle notation representing the bijection.

(a) „(1) = 3, „(2) = 1, „(3) = 6, „(4) = 5, „(5) = 4, „(6) = 7, „(7) = 2.

(b) Â(1) = 3, Â(2) = 1, Â(3) = 6, Â(4) = 4, Â(5) = 7, Â(6) = 2, Â(7) = 5.

(c) „Â (with the bijections „ and Â as above.)

(d) Â„ (with the bijections „ and Â as above.)

(e) –(1) = 2, –(2) = 1, –(3) = 4, –(4) = 3, –(5) = 6, –(6) = 7, –(7) = 5.

(f) —(1) = 6, —(2) = 3, —(3) = 2, —(4) = 5, —(5) = 4, —(6) = 7, —(7) = 1.

(g) –—.

Exercise 18.5.2. (a) Complete the following multiplication table for the
group S3. Remember that in the row of g and the column of h should
be the element gh (and not hg).

e (12) (23) (13) (123) (132)
e e (12) (23) (13) (123) (132)

(12) (12)
(23) (23)
(13) (13)
(123) (123)
(132) (132)
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(b) Based on the table above, what is the order of the element (23)?

(c) Based on the table above, what is the order of the element (132)?

Exercise 18.5.3. (a) Complete the following multiplication table for the
group D6.

e L3 L1 L2 R R2

e e L3 L1 L2 R R2

L3 L3
L1 L1
L2 L2
R R
R2 R2

(b) Based on the table above, what is the order of the element R? Is there
a geometric reasoning (i.e., one not using the multiplication table) for
this?

(c) Based on the table above, what is the order of the element L1? Is there
a geometric way you could have inferred this?

Exercise 18.5.4. (a) Complete the following multiplication table for the
group GL2(Z/2Z). Remember that in the row of g and the column of h
should be the element gh (and not hg).

e

A
1 0
1 1

B A
1 1
0 1

B A
0 1
1 0

B A
1 1
1 0

B A
0 1
1 1

B

e e

A
1 0
1 1

B A
1 1
0 1

B A
0 1
1 0

B A
1 1
1 0

B A
0 1
1 1

B

A
1 0
1 1

B A
1 0
1 1

B

A
1 1
0 1

B A
1 1
0 1

B

A
0 1
1 0

B A
0 1
1 0

B

A
1 1
1 0

B A
1 1
1 0

B

A
0 1
1 1

B A
0 1
1 1

B
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(b) Based on the table above, what is the order of the element
A

1 0
1 1

B

?

(c) Based on the table above, what is the order of the element
A

0 1
1 1

B

?

Exercise 18.5.5. (a) Exhibit a group isomorphism from S3 to D6.

(b) Exhibit a group isomorphism from S3 to GL2(Z/2Z).

(c) Prove that if f : G æ H is a group isomorphism, then so is the inverse
function f≠1.

(d) Prove that if f : G æ H is a group isomorphism and f Õ : H æ K is a
group isomoprhism, then so is the composition f Õ ¶ f .

(e) Prove that D6 is isomorphic as a group to GL2(Z/2Z).


