
Lecture 19

Non-linear change of basis
(group conjugation)

19.1 Goals
(1) Become familiar with the idea of conjugation (e.g., conjugating by an

element g)

(2) Understand the notion of conjugacy class.

19.2 Group automorphisms
Definition 19.2.1. A function f : G æ G is called a group automorphism

if it is a group isomorphism. (So group automorphisms are special kinds of
isomorphisms—those where the domain and codomain are the same group.)

We let
Autgroup(G)

denote the group of group automorphisms of G.

Remark 19.2.2. One should think of a group automorphism of G as a
symmetry of the group G. This is a bit meta—G itself should be thought of as
the symmetries of something, and Autgroup(G) itself describes the symmetries
of G.

Remark 19.2.3. Let h, hÕ be two elements of G. Suppose that there exists
a group automorphism f : G æ G for which f(h) = hÕ. Then—speaking
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from the intuition that a group automorphism is a symmetry of G—any
meaningful property that h has (as an element of the group G) must be
shared by hÕ. (For example, we know that h and hÕ must have the same
order.)

Let me make a geometric analogy to make this feel a bit closer to home.
(Though we’ve only studied regular polygons in depth, make sure you try to
imagine non-regular polygons in this paragraph.) Suppose P is some polygon.
Suppose further that f : P æ P is some symmetry of P and that f(v) = vÕ.
Then v and vÕ must look very similar! For example, we immediately see that
the angles at v and at vÕ must have the same measure. And there are more
subtle ways in which v and vÕ must be similar—after all, given a polygon,
just because two angles have the same angle measure, one cannot conclude
that there is necessarily a symmetry of the whole polygon taking one angle
to the other.

Likewise, if a group automorphism takes h to hÕ, the two elements look
very similar in ways far more subtle than just their orders.

Today, we’re going to see a very special kind of group automorphism,
given by conjugaction.

19.3 Conjugation and examples
Definition 19.3.1. Let G be a group, and g, h elements of G. Then the
conjugate of h by g is the element ghg≠1.

Fixing g, one has a function G æ G sending any h to the element ghg≠1.
This function is called conjugation by g. We will call this function Cg.
Exercise 19.3.2. Let G = S3, and let ‡ = (13).
(a) What is ‡≠1?

(b) What is the conjugate of · = (12) by ‡?

(c) What is the conjugate of · = (132) by ‡?

(d) Write out what the function C‡ does to every element of S3.
Exercise 19.3.3. Let G = S3, and let ‡ = (123).
(a) What is ‡≠1?

(b) Write out what the function C‡ does to every element of S3.
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19.4 Conjugation as a group automorphism
Conjugation is important for two distinct reasons. The first of these, as we
will see now, is that group conjugation gives a symmetry of a group G itself.
Proposition 19.4.1. Let G be a group and fix g œ G. Then Cg : G æ G is
a group homomorphism (from G to itself).
Proof. Let h, hÕ be in G. Then

Cg(h)Cg(hÕ) = (ghg≠1)(ghÕg≠1) = (gh)(g≠1g)(hÕg≠1) = ghhÕg≠1 = g(hhÕ)g≠1 = Cg(hhÕ).

The first equality is the definition of Cg (applied twice), the next equality is
associativity, the next is the definition of g≠1 (and of e), and the last equality
is the definition of Cg again.
Proposition 19.4.2. Let G be a group and g œ G.
(a) Cg is the inverse function to Cg≠1 .

(b) Cg is a group automorphism.
Proof. For the first claim, we must simply show that for every h œ G, we
have that

Cg(Cg≠1(h)) = h and Cg≠1(Cg(h)) = h.

To see the first equality, let’s compute:

Cg(Cg≠1(h)) = Cg(g≠1h(g≠1)≠1) = Cg(g≠1hg)
= g(g≠1hg)g≠1

= (gg≠1)h(gg≠1)
= ehe

= h. (19.4.0.1)

The first equality is by definition of Cg≠1 , and the rest of the first line is by
noting that the inverse of g≠1 is g. The next lines follow from the definition
of Cg, associativity, the definition of g≠1, and the definition of e, respectively.

The proof that Cg≠1(Cg(h)) = h follows similarly.
Here is the proof of (b). We know that Cg is a group homomorphism

by Proposition 19.4.1, and that it is a bijection by the proof of part (a). In
other words, Cg is a group isomorphism. Of course Cg has both domain and
codomain equal to G, so Cg is a group automorphism of G by definition of
group automorphism (Definition 19.2.1).
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The following exercise tells us that group conjugation provides interesting
symmetries only for non-abelian groups:
Exercise 19.4.3. Let G be an abelian group. Show that for any g œ G, the
function Cg is the identity function of G.

The following tells us there are some group automorphisms that do not
arise from conjugation:
Exercise 19.4.4. Show that n ‘æ ≠n is a group automorphism of Z (un-
der addition). Why is this automorphism not equal to conjugation by any
element of Z?

So, conjugation provides some special kinds of (i.e., not all) group auto-
morphisms of a group G. This class of group automorphisms is trivial when
G is abelian. Regardless, it is amazing that we can “automatically” write
down symmetries of a group G without knowing anything about it! (For any
g œ G, we are guaranteed that Cg is a group automorphism.) Because this
class of automorphisms is so readily available (hence used often) we give it a
name:
Definition 19.4.5. Let f : G æ G be a group automorphism. We say that
f is an inner automorphism if f = Cg for some g œ G.

I will leave the following to you:
Proposition 19.4.6. The collection of inner automorphisms of G is a sub-
group of Autgroup(G).

The above proposition actually follows from:
Proposition 19.4.7. For any g, gÕ œ G, we have that CgCgÕ = CggÕ . In
particular, the assignment g ‘æ Cg is a group homomorphism

C• : G æ Autgroup(G).

Proof. Let’s compute:

(Cg ¶ CgÕ)(h) = Cg(CgÕ(h))
= Cg(gÕh(gÕ)≠1)
= g(gÕh(gÕ)≠1)g≠1

= (ggÕ)h((gÕ)≠1)g≠1)
= (ggÕ)h(ggÕ)≠1

= CggÕ(h).
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Make sure you can follow every line. We have used in particular that the
inverse of ggÕ is the product (gÕ)≠1g≠1.

19.4.1 Conjugacy classes
The second reason we study conjugation is because, as we’ve discussed, con-
jugation tells us how “alike” two elements of a group G are. And, when a
group G is finite, we can count how many elements look alike. This gives a
powerful way to begin studying G, just as we can begin to study a polygon
by understanding which of its vertices look alike.

Example 19.4.8. We saw in the previous section that inner automorphisms
(i.e., conjugation) is a very special kind of automorphism, so if h and hÕ are
in fact related by an inner automorphism, they are even more intimately
indistinguishable.

This is so important that we give a name for when h is related to hÕ by
an inner automorphism.

Definition 19.4.9. Let G be a group and h, hÕ œ G. We say that h is

conjugate to hÕ if there exists some g œ G for which ghg≠1 = hÕ.

Exercise 19.4.10. Show that “being conjugate” is an equivalence relation.

Definition 19.4.11. The equivalence class of h, under conjugation, is called
the conjugacy class of h. We often write the conjugacy class of h as Cl(h).
Concretely,

Cl(h) = {hÕ such that, for some g œ G, hÕ = ghg≠1}.

Equivalently,
Cl(h) = {ghg≠1 | g œ G}.

Remark 19.4.12. So the way to write down the conjugacy class of some
element h is to take every g œ G and write out the conjugates ghg≠1.

Remark 19.4.13. Again using the intuition that elements taken to each
other under inner automorphisms are very similar, the conjugacy class Cl(h)
is a list of all the elements in G that share all the group-theoretic properties
that h satisfies as an element of G. In other words, it is a list of elements
that are as similar to h as you can get.
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Exercise 19.4.14. Let G = S3.

(a) Write out the conjugacy class of (12). (The conjugacy class should consist
of three elements.)

(b) At this point, why is it easy to write out the conjugacy class of (23)?

(c) Let’s test our intuition that conjugate elements are alike: In what ways
are the elements in your conjugacy class alike?

(d) Write out the conjugacy class of (123). (The conjugacy class should
consist of two elements.)

(e) At this point, why is it easy to write out the conjugacy class of (132)?

(f) Let’s test our intuition that conjugate elements are alike: In what ways
are the elements in the two classes you’ve computed not alike. That is,
are there obvious ways in which an element h œ Cl((23)) is unlike an
element hÕ œ Cl((123)) ?

Exercise 19.4.15. Let G be abelian, and choose any h œ G. Show that
Cl(h) contains exactly one element.

19.5 Conjugacy classes of the symmetric group
It turns out that cycle notation is also amazing for understanding conjugacy
classes of the symmetric group.

Theorem 19.5.1. Fix n Ø 1. Two elements of Sn are conjugate if and only
if they have the same cycle notation shape.

Example 19.5.2. For example, the element

‡ = (13)(56)(7982)

and the element
· = (59)(24)(1386)

are clearly di�erent elements of S9, but their cycle notations have the same
shape—consisting of two 2-cycles and one 4-cycle. The theorem tells us they
are conjugate.
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It is in fact easy to write down the element g that conjugates them. Note
that to “turn ‡ into ·” one can make the substitutions

1 ‘æ 5, 2 ‘æ 6, 3 ‘æ 9, 4 ‘æ 7, 5 ‘æ 2,

6 ‘æ 4, 7 ‘æ 1, 8 ‘æ 8, 9 ‘æ 3.

This substitution is itself an element of S9, which we’ll call h. Then one can
check that conjugation by h turns ‡ to · .

Once you internalize the theorem, you don’t have to do any computations
of function-composition to do the following exercise:

Exercise 19.5.3. (a) Write out all the conjugacy classes of S4. (This is a
bit annoying because S4 has 24 elements.)

(b) How many conjugacy classes are there?

(c) How many elements are in the conjugacy classes you found?

19.6 Some exercise solutions
Solution to Exercise 19.3.2. (a) ‡ is its own inverse. Indeed, (13)¶(13) = ().

One way to think of this intuitively is that ‡ is a function which does
nothing to 2, and swaps 1 and 3. If I swap two elements, and I perform
the same swap, of course I end up with the same configuration I began
with.

(b) Let’s do this out carefully. The conjugate of · by ‡ is, by definition:
‡·‡≠1. Plugging in the permutations that these symbols stand for, we
find:

‡·‡≠1 = (13)(12)(13) = (13)(132) = (23).
So the conjugate of · by ‡ is (23). You could have also written this as
(32). Notice that (32) is exactly the cycle you would obtain from · by
replacing every instance of 1 by 3, and every instance of 3 by 1 (as ‡
prescribes).

(c) When · = (132), we compute:

‡·‡≠1 = (13)(132)(13) = (13)(12) = (123).
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You could also have written (123) as the equivalent cycle (312). Notice
that (312) is exactly what one obtains from · = (132) by swapping every
instance of 1 by 3, and of 3 by 1 (just as ‡ prescribes).

(d) We have so far seen that

C‡((12)) = (23) and C‡((132)) = (123).

We have four more elements of S3 to compute C‡ for. They are e =
(), (23), (123) and (13) (‡ itself). Let’s compute:

C‡(e) = ‡e‡≠1 = ‡‡≠1 = e.

C‡((23)) = (13)(23)(13) = (13)(123) = (12).

C‡((123)) = (13)(123)(13) = (13)(23) = (132).

C‡((13)) = ‡‡‡≠1 = ‡ = (13).

In short, C‡ acts as follows:

e ‘æ e

(12) ‘æ (23)
(23) ‘æ (12)
(13) ‘æ (13)

(132) ‘æ (123)
(123) ‘æ (132).

By the way, one fun thing to check is that C‡ squares to the identity
function. In other words, C‡ ¶ C‡ = idS3 . One way to see this without
computing C‡ is to note that C‡ ¶ C· = C‡· in general, so C‡ ¶ C‡ =
C‡‡ = Ce = id.


