
Lecture 20

Orbit-stabilizer theorem

20.1 Goals
1. (Terminology) Understand what an orbit of a group action is.

2. (Examples) Be able to give examples of orbits of group actions.

3. (Terminology) Understand what a stabilizer subgroup is.

4. (Conceptual) Understand what the orbit-stabilizer theorem says.

5. (Application) Apply the orbit-stabilizer theorem in examples.

20.2 Review of group actions
In the last week, we took a detour to see more examples of groups—the
dihedral group and the symmetric group—and another example of group
actions—conjugation.

Today, we’re going to continue the study of group actions.
Let G be a group and X a set. Recall that a left group action of G on X

is a function
G ◊ X æ X, (g, x) ‘æ gx

for which ex = x and g(hx) = (gh)x.
In the following examples, we indicate the function G ◊ X æ X, but do

not verify that the function satisfies the conditions of being a group action.
We leave those verifications to the reader.
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230 LECTURE 20. ORBIT-STABILIZER THEOREM

Example 20.2.1. Let G = D2n be the dihedral group of order 2n—it is the
group of symmetries of a regular n-gon P . Let X be the set of vertices of
P . Then G acts on X, as any symmetry g will take any vertex v to another
vertex g(v), which out of sloth we may denote as gv.

Example 20.2.2. Let G = GL2(R). Then G acts on X = R
2 as follows:

Given any matrix A œ G, A sends a vector v œ X to Av (defined by matrix
multiplication).

Example 20.2.3. Let G be any group, and set X = G. Then G acts on X
by conjugation. Concretely,

G ◊ X æ X, (g, h) ‘æ ghg≠1.

You should check that the pair (e, h) is sent to h, and that the pair (gÕg, h)
has the same image as the pair (gÕ, ghg≠1).

Example 20.2.4. Let G be the mattress group, and X the set of vertices
(i.e., corners) of a (non-square) mattress. (See Section 14.4.) Then G acts on
X—any symmetry of the mattress takes a corner of the mattress to another
corner.

Here is one fact about group actions that we haven’t mentioned yet, but
that we’ll use today:

Proposition 20.2.5. Let G ◊ X æ X be a group action, and suppose that
gx = xÕ. Then g≠1xÕ = x.

Proof. g≠1xÕ = g≠1 · gx = (g≠1g)x = ex = x.

In words, Proposition 20.2.5 says that g≠1 “undoes” the action of g.

20.3 Orbits
Definition 20.3.1. Fix a group action G ◊ X æ X and an element x œ X.
Then the orbit of x is the set

{gx | g œ G}.

Equivalently, the orbit of x is the set

{xÕ œ X | xÕ = gx for some g œ G.}
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We will write the orbit of x as
Gx.

Note that Gx is a subset of X.
Remark 20.3.2. Suppose xÕ œ Gx. Then in fact, x œ GxÕ. After all, if
gx = xÕ then x = g≠1xÕ. We will often say that x and xÕ are “in the same
orbit” to reflect this symmetry—though in some instances it may be more
enlightening to say that x is in the orbit of xÕ (or vice versa) to emphasize a
particular element.
Remark 20.3.3. Given a group action G ◊ X æ X, you can think of an
orbit of x as a list of all the elements of X that look “identical” from the
perspective of the action. Indeed, if gx = xÕ (so that xÕ is in the same orbit
as x) and if you think of the action as manifesting some sort of notion of
symmetry, then x and xÕ look identical from whatever symmetry the action
is trying to express.
Remark 20.3.4. Given a group action G ◊ X æ X, one can think of X
as “split up” into its orbits. In other words, X is a disjoint union of its
orbits. From the perspective of the previous remark, we are splitting X up
into groups of elements that look similar to each other (with respect to the
action).
Warning 20.3.5. Given a group G and a set X, there may be many di�erent
actions of G on X. So you should make sure that, in each of the previous
remark, you understand that the symmetry is not something inherent to the
sets G and X, but rather only manifested once one specifies an action of G
on X.
Example 20.3.6 (The mattress group’s action on vertices). Let’s dig into
the example of the mattress group. Remember that the mattress group
consists of four elements: e (do nothing), Rx (rotate 180 degrees about the
x-axis), Ry (rotate 180 degrees about the y-axis), and Rz (rotate 180 degrees
about the z-axis).

Let’s (very creatively) label the elements of the vertex set a, b, c, d, s, t, u, v
as follows:

ab

cd st

uv
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Let’s understand the orbit of the element a. Here are the images of a under
the four elements of G:

e (Do nothing)

a

Rz (Rotate 180¶ about z-axis)

Rza

Ry (Rotate 180¶ about y axis)

Rya

Rx (Rotate 180¶ about x axis)

Rxa

In other words, we see that ea = a, Rza = t, Rya = d, Rxa = u. So the orbit
of a can be written

Ga = {a, d, t, u}.

So the orbit of a is a set of size 4, not the entire set X. So we see here an
example where an orbit of an element need not be the entire X.

In fact, the set X can be split up into exactly two orbits: Ga and Gb.

Remark 20.3.7. You can in fact check that the elements a, d, t, u œ X have
the same orbits:

Ga = Gd = Gt = Gu.

The pattern to observe: Two elements of X are in the same orbit if and only
if their orbits are equal. You will verify this in Exercise 20.7.1 below.

Example 20.3.8. Let P be a regular n-gon and X its set of vertices. Letting
G = D2n be the dihedral group, we have an action G ◊ X æ X. How many
orbits does this action have?

Any vertex v of the polygon may be taken to any other by a rotation, so
in fact, this action has only one orbit: X itself.
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Example 20.3.9. Let G = GL2(R) and X = R
2 with the usual action by

matrix multiplication. You can prove that any non-zero vector v œ R
2 can

be taken to any other non-zero vector vÕ by a well-chosen invertible matrix
A. On the other hand, if A is invertible, Av = 0 if and only if v = 0. So this
action consists of exactly two orbits: The orbit

G0 = {0}

consisting of only one element (the origin), and another orbit

R
2 \ {0}

consisting of all non-zero vectors.

20.4 Stabilizers
Given a group action on X and an element x of X, we have defined a subset
of X called the orbit of x. We will now define a subgroup of G associated to
x.

Definition 20.4.1. Let G ◊ X æ X be a group action and fix x œ X.
The stabilizer of x is the collection of elements of G that act trivially on x.
Concretely, the stabilizer of x is the set

{g œ G | gx = x}.

We denote the stabilizer of x by

Gx.

Proposition 20.4.2. Let G ◊ X æ X be a group action and fix x œ X.
Then Gx is a subgroup of G.

Proof. We must check three conditions: Gx contains e, (ii) If g œ Gx then
g≠1 œ Gx (so Gx is closed under inverses) and (iii) If g, gÕ œ Gx then ggÕ œ Gx

(so Gx is closed under products).
(i) By definition of group action, ex = x. Thus e œ Gx.
(ii) By definition of group action,

g≠1(gx) = (g≠1g)x = ex = x.
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On the other hand, if gx œ Gx, we see that gx = x, hence we conclude

g≠1x = x.

This shows g≠1 œ Gx.
(iii) The definition of group action tells us

(ggÕ)x = g(gÕx).

Assuming gÕ œ Gx, we see gÕx = x, so

(ggÕ)x = g(gÕx) = gx.

Assuming further that g œ Gx, we see gx = x, so

(ggÕ)x = x.

By definition, then, ggÕ œ Gx. This completes the proof.

Remark 20.4.3. So, finding group actions of G on a set X can also lead to
finding interesting subgroups of G—given any x œ X, the stabilizer Gx has
a chance at being a (fun) subgroup of G.

Example 20.4.4. Let G be the mattress group and X the set of corners of
the mattress. Fix a corner, say a (using the notation from Example 20.3.6).
What is the stabilizer?

Obviously, Ga contains e, as “do nothing” fixes a. But all other symme-
tries of the mattress move a. Thus, the stabilizer of a is actually a trivial
subgroup, consisting of only the identity element:

Ga = {e}.

Example 20.4.5. What about the action of D2n on the set X of vertices
of the regular n-gon? Well, let’s fix a vertex v œ X. There are only two
symmetries of the regular n-gon that fix v: e (do nothing), and reflection Lv

about the angle bisector at v. So the stabilizer of v is a subgroup consisting
of exactly two elements:

Gv = {e, Lv}.

So far, regardless of x œ X, the stabilizers Gx have been isomorphic
(though they are not the same subsets of G). Here is an action where stabi-
lizer subgroups look drastically di�erent:
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Example 20.4.6. Let G = GL2(R) and X = R
2. The zero vector 0 œ R

2 of
course fixed by any matrix, so the stabilizer of 0 is all of G:

G0 = G.

On the other hand, let v =
A

1
0

B

be the standard basis vector with first

coordinate 1. Then the stabilizer of v is the collection of all invertible matrices
whose first column is v:

Gv = {
A

1 b
0 c

B

| c ”= 0.}

20.5 The orbit-stabilizer theorem
Given a group action G ◊ X æ X and an element x œ X, we can associate:

(a) A subset Gx of X called the orbit of x.

(b) A subgroup Gx of G called the stabilizer of x.

(Beware of whether lower-case x is a subscript, or is on the same line as G.)
As its name implies, the orbit-stabilizer theorem relates the two notions—

specifically, the sizes of these two notions.

Notation 20.5.1. For any finite set S, let |S| denote the number of elements
in S. (When G is a finite group, |G| thus denotes the order of G.)

Theorem 20.5.2. Suppose G is a finite group. Fix any group action G ◊
X æ X, and any element x œ X. Then

|G| = |Gx| ◊ |Gx|.

In other words, the number of elements in G is a product of the number of
elements in the orbit of x and the number of elements in the stabilizer of x.

Proof. We will write G as a disjoint union of |Gx| many subsets, each of size
|Gx|; this will prove the claim.

Because G is finite, so is Gx. So let’s label the elements of Gx:

Gx = {x1, x2, . . . , xk}
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where k = |Gx| is the number of elements in Gx. For the sake of concreteness,
let’s assume x1 = x. And for each xi, let

Ci := {g œ G | gx = xi}.

That is, Ci is the set of all elements in G taking x to xi. For example,
C1 = Gx is the stabilizer of x (because we’ve declared x1 = x).

The C1, . . . , Ck form a partition of G. Let’s note that every element
of G is in Ci for some i—because an element of g takes x somewhere, and by
definition, takes x somewhere in the orbit of x.

Moreover, if i ”= j, then Ci fl Cj = ÿ, because no group element can
take x to two di�erent elements. So indeed, the sets C1, . . . , Ck partition G,
meaning that

|C1| + |C2| + . . . + |Ck| = |G|. (20.5.0.1)
Each Ci admits a bijection to C1. I now claim that, for every i, there

is a bijection from C1 to Ci. To see this, let’s choose an element g œ G for
which gx = xi. (Such a g exists by the assumption that xi is in the orbit of
x.) Fixing this g once and for all, I claim that “multiplication by g on the
left” defines a function

lg : C1 æ Ci, h ‘æ gh.

Let’s check that rg has codomain Ci: If h œ C1, we know hx = x, so (gh)x =
g(hx) = gx = xi.

Now I claim lg admits an inverse function, namely lg≠1 . To see this, let’s
first note that g≠1(xi) = x (Proposition 20.2.5); this shows that lg≠1 takes Ci

to C1. To see that lg≠1 is an inverse to lg, let’s verify it’s a two-sided inverse:

(lg≠1 ¶ lg)(h) = lg≠1(gh) = g≠1(gh) = eh. (lg ¶ lg≠1)(h) = gg≠1h = h.

This last bolded statement tells us that |Ci| = |C1| for every i, so the equal-
ity (20.5.0.1) becomes

|C1| + . . . + |C1| = |G|
where the summation has k terms in it. In other words,

k|C1| = |G|.

Now, remembering that k = |Gx| is the size of the orbit, and C1 = Gx is the
stabilizer of x, the result follows.
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20.6 Some minor applications of the orbit-
stabilizer theorem

Big theorems are always good for checking answers.

Example 20.6.1. The dihedral group D2n acts on the set of vertices of a
regular n-gon. Pick a vertex v. Its orbit consists of n elements (because an
n-gon has n vertices, and any vertex can be taken to any other by a rotation).
Moreover, the stabilizer of v has order 2 (because the only symmetries that
fix a given vertex are e, and reflection about the angle bisector at v). So the
orbit-stabilizer theorem tells us that the order of G is given by

|Gv| ◊ |Gv| = n ◊ 2 = 2n.

This verifies that 2n is indeed the order of the group of symmetries of the
regular n-gon.

Example 20.6.2. Let G = Sn be the symmetric group on n letters. As you
know, Sn acts on n = {1, 2, . . . , n}. Given any two elements i, j œ n, you can
find a bijection that sends i to j (for example, just swap i and j and leave
all other elements fixed). So this group action consists of one orbit, of size n.

So pick an eleement i œ n. How big is its stabilizer? (In other words, how
many bijections are there that send I to itself?) The orbit stabilizer-theorem
tells us

|G| = |Gi| ◊ |Gi|

where G = Sn, Gi is the stabilizer of i, and Gi is the orbit. Well, we have

n! = n ◊ |Gi|

So we conclude that the stabilizer has size (n ≠ 1)!.
This isn’t so surprising. In fact, taking i = n, the stabilizer Gn is just the

collection of permutations that leave n fixed; in other words, the number of
ways you can permute {1, . . . , n ≠ 1}. And of course there are (n ≠ 1)! ways
of doing this.

But! You can also use the orbit-stabilizer theorem to have deduced that
Sn has size n factorial, by induction.

First, note that when n = 1, obviously S1 has size 1.



238 LECTURE 20. ORBIT-STABILIZER THEOREM

By induction, suppose that you have proven that Sn≠1 has size (n ≠ 1)!.
Then the stabilizer of n can be identified wish Sn≠1, so we conclude

|Sn| = n ◊ |SN≠1|

by the orbit-stabilizer theorem. By induction, we conclude

|Sn| = n ◊ (N ≠ 1)! = n!.

20.7 Exercises
Exercise 20.7.1. Let G ◊ X æ X be a group action.

(a) Show that the relation “is in the orbit of” is an equivalence relation.
More precisely, declare that x ≥ xÕ if and only if xÕ is in the orbit of x.
Show that ≥ is an equivalence relation.

(b) Show that an orbit of the group action is precisely an equivalence class
of the above relation.
Then, the next two parts of this problem are completely formal (and
require no knowledge of groups):

(c) Show that if xÕ is in the orbit of x, then Gx = GxÕ.

(d) Show that if Gx = GxÕ, then xÕ is in the orbit of x.

Exercise 20.7.2. Verify the stabilizer computations in Example 20.4.6. That

is, compute the stabilizer of 0 œ R
2, and of

A
1
0

B

, for the action of G = GL2(R)

on X = R
2.

Example 20.7.3. Suppose that G is a group of prime order. (This means
|G| is a prime number.) Show that if G acts on a set X, the orbits of the
group action can only have sizes 1 or |G|.

Example 20.7.4. Let P be a polyhedron (not a polygon). And suppose that
P has the following symmetry properties:

(i) Given any two faces of P , there exists a symmetry of P that takes one
face to the other. (In particular, every face of P is congruent to any
other.)
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(ii) Every face of P is a regular n-gon.

(iii) Moreover, rotation by 2fi/n about an axis perpendicular to a face is a
symmetry of P .

Let G be the group of rotational symmetries of P . Let X be the set of faces

of P .

(a) Show that G has order n ◊ |X|.

(b) Compute the number of rotational symmetries of a cube.


