
Lecture 21

Lagrange’s Theorem and the
class equation (applications of
orbit-stabilizer)

21.1 Goals
1. Understand the statement of Lagrange’s theorem.

2. Understand applications of Lagrange’s theorem.

3. Understand the content of the class equation.

4. Understand applications of the class equation

5. Understand the notion of center.

6. Understand that any element g œ G defines a subgroup generated by
g.

21.2 Lagrange’s Theorem
The orbit-stabilizer theorem tells us that, for finite groups, there is a big
relationship between symmetries and divisibility. After all, if G exhibits
symmetries of X (by specifying a group action of G on X) then sizes of
orbits have to be divisors of |G|.

241



242LECTURE 21. LAGRANGE’S THEOREM AND THE CLASS EQUATION (APPLICATIONS OF ORBIT-STABILIZER)

This theme continues. Here is one major application of the orbit-stabilizer
theorem:

Theorem 21.2.1 (Lagrange’s Theorem). Let G be a finite group and H a
subgroup. Then |H| divides |G|.

Remark 21.2.2. One could ask for a converse: If d divides |G|, does there
exists a subgroup of G with order d? The answer turns out to be no. For
example, we can take A4 µ S4 to be the following subgroup of order 12:

e, (12)(34), (13)(24), (14)(23),

(123), (132), (124), (142), (134), (143), (234), (243).

(Don’t worry; the fact that this is a subgroup of S4 is not at all obvious at
this point.) Then 6 divides |A4| = 12, but there is no subgroup of order 6 in
A4.

21.2.1 Any group acts on itself
To set up our proof of the theorem, let’s first note that any group G acts on
itself. Indeed, the multiplication map

G ◊ G æ G(g, h) ‘æ gh

is a group action by definition of group.

21.2.2 Any group action on a set results in a group
action on the power set

Here is a fun, second observation: If G acts on a set, then G acts on the
power set of that set. In other words, G acts on the set of all subsets:

Proposition 21.2.3. Suppose G ◊ Y æ Y is a group action. Let P(Y )
denote the set of all subsets of Y . Then the map

G ◊ P(Y ) æ P(Y ), (g, A) ‘æ gA := {ga | a œ A}

is a group action.
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Remark 21.2.4. This is fairly straightforward to see in words: Fix a subset
A of Y —this is just some collection of points in Y . Well, every g sends
each of these points somewhere. In particular, applying g to each of these
points, we’ll get some (potentially new) subset of Y . We let gA denote this
(potentially new) subset.

Remark 21.2.5. Note that, because the action of g is a bijection of Y , A
and gA always have the same size.

Example 21.2.6. Let G = Sn act on the set Y = n. For concreteness, we
will let n = 4. Then P(4), the set of all subsets of 4, has 24 = 16 elements:

{},

{1}, {2}, {3}, {4},

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},

{1, 2, 3, 4}.

(Of course, you notice the pattern of 1, 4, 6, 4, 1—the number of subsets of
a particular cardinality—as the n = 4th row in Pascal’s triangle.)

Let me write what the element g = (132) does to some of the elements of
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P(4):

g{} = {}
g{1} = {3}
g{2} = {1}
g{3} = {2}
g{4} = {4}

g{1, 2} = {1, 3}
g{1, 3} = {2, 3}
g{1, 4} = {3, 4}
g{2, 3} = {1, 2}
g{2, 4} = {1, 4}
g{3, 4} = {2, 4}

g{1, 2, 3} = {1, 2, 3}
g{1, 2, 4} = {1, 3, 4}
g{1, 3, 4} = {2, 3, 4}
g{2, 3, 4} = {1, 2, 4}

g{1, 2, 3, 4} = {1, 2, 3, 4}

Example 21.2.7. When G acts on itself, the induced action on P(G) has
exactly two orbits of size one (i.e., exactly two fixed points): The subsets ÿ
and G.

21.2.3
Thanks to the previous two observations, it makes to study the stabilizer of
the subset H.

Lemma 21.2.8. Let H µ G be a subgroup, and let G ◊ P(G) æ P(G)
denote the action of a group G on its own power set. Then the stabilizer of
H is H.

Proof. The notation can get confusing, so let’s write H to mean an element of
P(G) (i.e., H as a subset of G), and write H when we are trying to understand
H as a subgroup of G. So we are setting out to show that GH = H.
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(i) First, let me show that the stabilizer GH is a subset of H. For this,
suppose that

gH = H.

gH = H means in particular that gH µ H, so that for every h œ H, we know
that gh œ H. In particular, there exists some hÕ œ H so that gh = hÕ. Thus,

g = hÕh≠1.

By choice, h, hÕ œ H = H; because subgroups are closed under inverse and
multiplication, we conclude that g œ H. This shows GH µ H.

(ii) Next, let me show that H µ GH. This means that if g œ H, we must
show that

gH = H.

First, gH µ H. This is because if g œ H and h œ H = H, the definition
of subgroup implies gh œ H = H. On the other hand, if hÕ œ H, define
h = g≠1hÕ. Because g is assumed to be in H, we conclude that h œ H as
well. Moreover,

gh = gg≠1hÕ = hÕ

so hÕ œ gH. This shows H µ gH, concluding the proof that H = gH when
g œ H. In other words, H µ GH.

Combining (i) and (ii), we see that GH = H.

21.2.4 Proof of Lagrange’s Theorem
Proof. We continue with the notation of Lemma 21.2.8. By the orbit-stabilizer
theorem,

|G| = |GH| ◊ |GH|.

By Lemma 21.2.8, we know that GH = H, so we see that the order of G is
divisible by the order of H.

21.3 Applications of Lagrange’s Theorem

21.3.1 Review: Subgroup generated by an element
Before we see some applications, let’s review some basics.
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Recall that given a group G and an element g œ G, there is a subgroup

generated by g. As a set, it is the collection of all elements

{. . . g≠2, g≠1, e, g, g2, . . .} = {gn | n œ Z}.

Remark 21.3.1. A fancy way to think about this subgroup is as the image
of the group homomorphism

Z æ G, n ‘æ gn.

21.3.2 Groups of prime order
Here is one application of Lagrange’s Theorem:

Proposition 21.3.2. If G is a group of prime order, G is cyclic. That is, G
is isomorphic to the group Z/pZ. In particular, G is abelian.

Example 21.3.3. If you know that a group has order 13, then you know it
is isomorphic to Z/13Z (because 13 is prime).

There’s a lot to digest here, but you probably feel that Proposition 21.3.2
is rather powerful. Just by knowing the size of a group, you know which
group it is (up to isomorphism).

Remark 21.3.4. In general, a “goal” of the study of finite groups was to
(i) Given n, have a list of all groups with order n, and (ii) given a group of
order n, have a reasonable algorithm for deciding which group of order n it
is.

This “goal” is more or less accomplished, but that does not mean that
finite group theory is easy. This is because whether you can run an algorithm
on a group is highly dependent on how a group is given to you. There is a
lot of time in topology, for example, spent trying to decide whether a group
of order 4 is cyclic, or is the Klein 4-group.

Proof of Proposition 21.3.2. Since G is a group of prime order, it has at least
2 elements. In particular, it contains an element g that does not equal the
identity. Then the subgroup generated by g contains at least 2 elements, so
does not have order 1.

On the other hand, by Lagrange’s Theorem, any subgroup of G must
have order 1 or order |G|. In particular, the subgroup generated by g must
equal G.
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This proves G is cyclic.
Further, by definition of the group generated by g, we conclude that we

can write G concretely as

G = {e, g, g2, . . . , gp≠1}.

The assignment
Z/pZ æ G, a ‘æ ga

is thus a group isomorphism.

21.3.3 Orders of elements
Proposition 21.3.5. Let G be a finite group and g œ G an element. Then
the order of g divides the order of G.

Proof. The subgroup generated by g has order equal to the order of g. Now
apply Lagrange’s Theorem.

21.4 Class equation and the conjugation ac-
tion

What we’ve seen is that by being creative about our group actions, we can
discover beautiful facts about groups. Here, let’s apply orbit-stabilizer to the
conjugation action.

21.4.1 Conjugation action
Remember that we have a canonical symmetry of a group, given by conju-
gation? Let’s review. A group G acts on itself by multiplication, and by
conjugation:

G ◊ G æ G, (g, h) ‘æ ghg≠1.

(In terms of the previous group action notation, G = X and h œ X.) We
won’t want to write this action as “gh” because we’d confuse it with group
multiplication. So we have introduced the notation of

Cg(h) = ghg≠1.

Although we’ve already seen this, let’s review:
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Proposition 21.4.1. Conjugation defines a group action of G on itself.

Proof. We need to show that Ce(h) = h and that CggÕ(h) = Cg(CgÕ(h)). Well,

Ce(h) = ehe≠1 = ehe = h

and

CggÕ(h) = (ggÕ)h(ggÕ)≠1 = ggÕh(gÕ)≠1g≠1 = gCgÕ(h)g≠1 = Cg(CgÕ(h)).

Example 21.4.2. The orbit of an element h (under the conjugation action)
is the set

{ghg≠1 |g œ G}.

This is by definition the conjugacy class of h. (Definition 19.4.11.)

This example leads immediately to the following:

Proposition 21.4.3. Assume G is a finite group and let h œ G. Then the
size of the conjugacy class of h divides |G|.

Proof. By Example 21.4.2, the conjugacy class Cl(h) of h is the orbit of a
group action of G. Hence the orbit-stabilizer theorem says

|G| = |Cl(h)| ◊ |stabilizer of h (under conjugation)|.

In particular, |Cl(h)| divides |G|.

The phrase “stabilizer of h (under conjugation)” is rather clunky. We
thus give it a name:

Definition 21.4.4. Let G be a group and fix h œ G. The centralizer of h in
G is the collection of those elements g for which Cg(h) = h. (In other words,
the centralizer of h is the stabilizer of h under the conjugation action.)

Put another way, the centralizer of h is the set of all g œ G satisfying

ghg≠1 = h,

or equivalently,
gh = hg.

So, the final equivalent description of the centralizer you should know is that
the centralizer of h is the set of all g œ G commuting with h.
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21.4.2 Centers
Let’s study the conjugation action some more. For example, are there ele-
ments of X = G that are fixed by the conjugation action?

Definition 21.4.5. Let G ◊ X æ X be a group action. We say that x œ X
is a fixed point of the group action if, for every g œ G, gx = x.

Put another way, x is a fixed point if its orbit has size exactly 1.

Example 21.4.6. What would it mean for h to be a fixed point of the
conjugation action? It would mean that for every g œ G, we have that

ghg≠1 = h.

By multiplying on the right by g, the above equation is equivalent to

gh = hg.

In other words, h is a fixed point of the conjugation action if and only if h
commutes with every element of G.

Example 21.4.7. e is a fixed point of the conjugation action, because

geg≠1 = gg≠1 = e.

And, sure enough, for every g œ G, we know eg = ge (because both sides
equal g).

“Commuting with every element of G” is an important property. We give
a name to the set of all elements that satisfy this property:

Definition 21.4.8. Let G be a group. The center of G is the set of all
elements h œ G such that, for all g œ G, gh = hg. We often denote the
center of G by Z.

So, the center is the collection of fixed points of the conjugation action.
But the less obscure characterization (as elements that commute with all
elements of G) gives rise to a nice property:

Proposition 21.4.9. The center of G is a subgroup of G.
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Proof. We saw in Example 21.4.7 that e is in Z. It remains to show that Z
is closed under multiplication and under inverses.

So suppose h and hÕ are in the center. Then for all g œ G, we have

g(hhÕ) = (gh)hÕ = (hg)hÕ = h(ghÕ) = h(hÕg) = (hhÕ)g.

So hhÕ commutes with all elements of G. This shows hhÕ is in the center.
If h is in the center, then for any g œ G, we have that gh = hg. Multi-

plying both sides by h≠1 on the right and left, we find

h≠1g = gh≠1.

This shows that h≠1 commutes with g. Because g was arbitrary, this shows
h≠1 is also in the center.

21.5 The class equation
To prove the orbit-stabilizer theorem, we divided G into subsets of equal size.

But sometimes, it’s useful to divide up the thing that G is action on—in
other words, we can get information about an action by dividing X up into
meaningful subsets. The class equation is a powerful equation—giving insight
into the structure of non-abelian groups—obtained precisely by dividing X =
G up into its orbits.

21.5.1 A set as a union of its orbits
Given a group action G ◊ X æ X, let’s observe that X is a union of its
orbits. That is, we can write

X = O1 fi O2 fi . . . fi Ok

where the Oi are orbits of the group action. (For simplicity we’ve assumed
there are finitely many orbits in the group action; namely, k of them; this
assumption is automatic if X is a finite set.)

Moreover, two distinct orbits do not intersect each other, so we can turn
unions of sets into summation of sizes:

|X| = |O1| + |O2| + . . . + |Ok|.
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21.5.2 When the action is the conjugation action
So, let’s recall that an orbit of X = G under the conjugation action is just
a conjugacy class. By using the same trick of writing a set as a union of its
orbits, we find that

G = Cl(h1) fi Cl(h2) fi . . . fi Cl(hk).

Let me carefully say what I mean. I have chosen an hi from each orbit Oi of
the conjugation action. If hi œ Oi, then Oi = Cl(hi) by Example 21.4.2.

Now, to organize things, let’s divide orbits into two kinds of orbits: Those
of size 1 (determined by fixed points of the action) and those of size Ø 2:

G =
Q

a
€

conjugacy classes Cl(hi) of size 1
Cl(hi)

R

bfi
Q

a
€

conjugacy classes Cl(hj) of size Ø 2
Cl(hj)

R

b .

But we saw in Section 21.4.2 that the collection of elements h that are fixed
by the conjugation action forms a subgroup: the center of G. In other words,
we may re-write the above as

G = Z fi
Q

a
€

conjugacy classes Cl(hj) of size Ø 2
Cl(hj)

R

b

where Z is the center of G.
Again by noting that none of the subsets in the union on the righthand

side intersect, we may turn this union of subsets into a sum of sizes. This
results in the following:

Theorem 21.5.1 (The class equation). Let G be a finite group. Let C1, . . . , Ck

be its conjugacy classes of size Ø 2. Then

|G| = |Z| +
kÿ

i=1
|Ci|.

21.6 Applications of the class equation
Theorem 21.6.1. Let G be a group with order pn. Then the center of G
has more than 1 element.
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In fact, by Lagrange’s Theorem, the center must thus have size at least p;
hence have size p, or p2, or p3... or pn≠1, or pn (if G turns out to be abelian).

Proof. The class equation reads

|G| = Z +
kÿ

i=1
|Ci|

where each C1, . . . , Ck are the conjugacy classes of size at least 2. By the
orbit-stabilizer theorem, we know that each |Ci| is divisible by p (because
|Ci| is a factor of pn, hence a power of p). So we must have

|Z| = |G| ≠
kÿ

i=1
|Ci|

where the righthand side is made up of integers divisible by p. In particular,
|Z| must be divisible by p, meaning |Z| has size at least p.

21.7 Exercises
Exercise 21.7.1. Here is a fun application of the orbit-stabilizer theorem.

Theorem 21.7.2 (Cauchy’s Theorem). Let G be a finite group, and suppose
p is a prime number dividing |G|. Then there exists an element of order p in
G.

(a) Given p, let Gp = G ◊ . . . ◊ G be a product of p copies of G. Let
B µ G ◊ . . . ◊ G be the subset of elements (g1, . . . , gp) for which the
product g1g2 . . . gp = e.
Let Z/pZ act on Gp as follows: Given a œ Z/pZ,

a · (g1, . . . , gp) = (g1≠a, . . . , gp≠a)

where i ≠ a is understood mod p.
Show that if (g1, . . . , gp) œ B, then a(g1, . . . , gp) œ B for all a œ Z/pZ.
(Hint: Conjugation by gp.)
(This shows in particular that Z/pZ acts on B.)
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(b) By dividing B into its orbits, show that there must be at least two fixed
points. (Hint: (e, e, . . . , e) is a fixed point of the Z/pZ action. Further,
|B| is divisible by p, as are all the orbits that are not of size 1.)

(c) By examining what it means to be a fixed point of the Z/pZ action,
prove Cauchy’s theorem.


