
Lecture 22

Group homomorphisms,
kernels, and normal subgroups

22.1 Goals
1. Become familiar with more examples of group homomorphisms.

2. Understand the definition of kernel.

3. Understand that the triviality of the kernel is equivalent to a homo-
morphism being an injection.

4. Understand the definition and importance of normal subgroups (from
the perspective of symmetry of a group).

5. Understand why kernels are normal subgroups.

22.2 Homomorphisms and their utility
Let’s recall the definition of group homomorphism:

Definition 22.2.1 (Definition 15.4.1.). Let G and H be two groups. A
function f : G æ H is called a group homomorphism if for every g, gÕ œ G,
we have that f(ggÕ) = f(g)f(gÕ).

In words, a group homomorphism is a function between two groups re-
specting the group operation of each (i.e., respecting “multiplication”). We
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have already seen that this barebones definition gives rise to some very nice
properties:

Proposition 22.2.2 (Proposition 15.4.2.). Suppose f : G æ H is a group
homomorphism. Then:

(a) Let eg œ G and eH œ H be the identity elements. Then f(eG) = eH .
(Group homomorphisms respect identity elements.)

(b) For any g œ G, f(g)≠1 = f(g≠1). (Group homomorphisms respect in-
verses.)

I originally introduced group homomorphisms as a natural way to try
and compare two groups G and H. For example, a group homomorphism
f : G æ H could tell us a way in which multiplication in G translates into
multiplication in H.

But now that we have some more tools lying around, I can begin to ex-
plore other ways in which homomorphisms are useful. Aside from the above
motivation (comparing groups), interesting homomorphisms can help us un-
derstand deeply insightful structures. Now that we know about conjugation,
we can actually link three di�erent ideas:

• Measuring how far f : G æ H is from being an injection. (Kernels.)

• How to destroy “redundancies” in a group action. (Quotient groups.)

• Finding subgroups of G that are preserved under conjugation. (Normal
subgroups.)

The relation between these ideas will be the topic of today and next time.

22.3 Examples of group homomorphisms
Example 22.3.1. Let G = D2n be the symmetries of a regular n-gon, and
let’s label the vertices of the n-gon by numbers 1, 2, . . . , n. We let H =
Aut(n) = Sn be the set of bijections from n to itself. Then, because G acts
on the set of vertices of the regular n-gon, we have a homomorphism

f : D2n æ Sn.
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(This is the content of Proposition 17.3.7.) Concretely, a symmetry g of a
polygon is sent to the bijection from n to itself encoding how g transports the
vertices of the polygon. For example, a reflection about the angle bisector at
the ith vertex will result in a bijection f(g) that fixes i œ n.

Example 22.3.2. Fix an integer n. Let G = Z and H = Z/nZ. Then there
is a group homomorphism

Z æ Z/nZ

sending an integer a to its equivalence class modulo n. Just to get a feel
for this: When n = 3, the elements . . . , ≠6, ≠3, 0, 3, 6, . . . are all sent to the
element [0] of the codomain.

Example 22.3.3. Let R æ S be a ring homomorphism. As you know, the
collection of units G = R◊ is a group. Moreover, because ring homomor-
phisms respect multiplication, we have an induced function

R◊ æ S◊.

As an example, we studied the ring homomorphism C æ M2(R) in Sec-
tion 6.3, by observing that both complex numbers and 2-by-2 matrices act
on R

2. We thus have a group homomorphism

C \ {0} æ GL2(R)

from the set of non-zero complex numbers (under multiplication of complex
numbers) to the set of invertible 2-by-2 real matrices (under matrix multi-
plication).

Here is a new-ish example we haven’t discussed explicitly. Let’s recall:

Definition 22.3.4. Given a 2-by-2 matrix A =
A

a b
c d

B

with real coe�cients,

define the determinant of A to be the number

det(A) = ad ≠ bc.

Proposition 22.3.5. Let A and B be two 2-by-2 matrices. Then

det(AB) = det(A) det(B).
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Proof. Let B =
A

aÕ bÕ

cÕ dÕ

B

, and let’s just compute:

det (AB) = det
AA

a b
c d

B A
aÕ bÕ

cÕ dÕ

BB

= det
AA

aaÕ + bcÕ abÕ + bdÕ

caÕ + dcÕ cbÕ + ddÕ

BB

= (aaÕ + bcÕ)(cbÕ + ddÕ) ≠ (abÕ + bdÕ)(caÕ + dcÕ)
= ad(aÕdÕ ≠ bÕcÕ) + bc(cÕbÕ ≠ dÕaÕ) + aaÕcbÕ + bcÕddÕ ≠ abÕcaÕ ≠ bdÕdcÕ

= ad(aÕdÕ ≠ bÕcÕ) ≠ bc(aÕdÕ ≠ bÕcÕ) (22.3.0.1)
= (ad ≠ bc)(aÕdÕ ≠ bÕcÕ)
= det(A) det(B).

The fun thing is, the above proof is true regardless of whether a, b, c, d
were real numbers, complex numbers, integers, or in any commutative. (We
used that multiplication is commutative in the above proof.)

So, let R be any commutative ring. Note that if A œ GL2(R) is an
invertible matrix, it must be that det(A) det(A)≠1 = det(I) = 1. (The
determinant of the identity matrix is 1.) In particular, det(A) œ R◊. So we
have:

Corollary 22.3.6. Let R be any commutative ring. Then the determinant
is a group homomorphism

GL2(R) æ R◊.

Remark 22.3.7. In fact, one can define the notion of determinant for n-by-
n matrices with n Ø 1. It remains true that det(AB) = det(A) det(B) in
this generality, though the typical proof of this is far slicker than the brute-
force computation of Proposition ??. The usual proof of that det respects
multiplication proceeds by proving that there exists exactly one function
from Mn(R) æ R that respects addition and scaling of columns in a matrix
(i.e., is multilinear in the columns), and that sends the identity to 1, and that
switches signs when columns are swapped (i.e., is skew-symmetric). It turns
out to follow formally that the determinant must then be multiplicative.
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Example 22.3.8. When R = R, we have a group homomorphism

det : GL2(R) æ R
◊.

When R = Z, we have a group homomorphism

det : GL2(Z) æ Z
◊ = {1, ≠1}.

When R = Z/3Z, we have a group homomoprhism

det : GL2(Z/3Z) æ (Z/3Z)◊ = {1, 2}.

22.4 How far is a group homomorphism from
being an injection?

22.4.1 Kernels
As you know, for any function f (not necessarily a group homomorphism), we
can ask whether f is an injection. Even before the idea of groups, whether f
is an injection or not told us about potential “redundancies” of the function.
For example, if f is not an injection, then there must exist two non-equal
elements x, xÕ of the domain for which f(x) = f(xÕ). So in some sense, f
wants to encode a loss of information: applying f makes the domain “forget”
how to distinguish x from xÕ.

This intuition becomes even clearer when you think about a group action
of G on X. As we’ve seen a few times now, if G acts on a set X, we
auomatically have a group homomorphism

f : G æ Aut(X).

Now, suppose that we have two elements g, gÕ that are sent to the same
element of the codomain. This means that g and gÕ act the exact same way

on elements of X. In other words, they encode the exact same symmetry
of X. Thus, it appears that—when understanding symmetries of X—this
group action has some redundancies.

A very special kind of redundancy is if a non-trivial element of G acts
trivially on X. In other words, if gx = x for all x œ X. Put judgmentally,
g is useless. It performs the exact same action that e does, so why keep it
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around? Note that g is such a “useless” element of G precisely when f(g) = e;
in other words, when f sends g to the identity element of Aut(X).

Of course, there are group homomorphisms that do not have target given
by Aut(X). So let’s more generally consider a group homomorphism

f : G æ H.

Again, we can ask whether some elements of G are rendered “useless” by f ;
in other words, whether if there is any g œ G for which f(g) = eH .

Note that whether there are non-trivial elements of G that are sent to
eH simultaneously measures: (i) whether some elements of G are rendered
useless by f , and (ii) whether f is an injection (because if f(g) = f(e) and
g ”= e, we know f is not an injection).

We give a name for elements that map to e in the codomain:

Definition 22.4.1 (Kernel). Let f : G æ H be a group homomorphism.
The kernel of f , denoted ker(f), is the set of all elements of G that are sent
to eH under f . Put another way, the kernel of f is the preimage of eH . So

ker(f) = f≠1({eH}) = {g œ G | f(g) = eH}.

Remark 22.4.2. The kernel always contains the identity of G. Indeed, if f
is a group homomorphism, we’ve already seen that f(eG) = eH .

22.4.2 Examples of kernels
Example 22.4.3. In the example of f : D2n æ Sn, what would it mean
for a symmetry of a polygon to do nothing on all vertices? Well, this would
mean that the symmetry of the polygon does nothing on the entire polygon.
In particular, the pre-image of eSn is exactly eD2n . So here, ker(f) = {eD2n}
consists of exactly one element; this is an example of a trivial kernel, as
kernels always have at least one element (Remark 22.4.2).

Example 22.4.4. In the example of f : Z æ Z/nZ, which integers are sent
to 0 modulo n? Precisely the multiples of n. Thus,

ker(f) = {. . . , ≠3n, ≠2n, ≠n, 0, n, 2n, 3n, . . .}.

You may recognize this as the ideal nZ. So this is an example where the
kernel is not trivial (i.e., contains more than just the identity of the domain).
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Example 22.4.5. For an arbitrary commutative ring R, the kernel of the
determinant det : GL2(R) æ R◊ may be hard to write down explicitly.
Regardless, the kernel gets a special name (that you’ve seen in notes from
previous lectures):

ker(det) = SL2(R).
In other words, the kernel of the determinant is the set of all 2-by-2 matrices
whose determinant equals 1. In the case of R = Z/3Z, there are 24 elements
in this kernel. I am too lazy to write them all out, so please be content
with the example of R = Z/2Z, where the special linear group has only 3
elements:

SL2(Z/2Z) = {
A

1 1
0 1

B

,

A
1 0
1 1

B

,

A
1 0
0 1

B

}.

22.4.3 Kernels detect whether a homomorphism is an
injection

A priori, there may be other ways in which f could be not an injection (for
example, perhaps there is only one element that maps to e, but multiple
elements mapping to some other h œ H). But it turns out that when f is a
group homomorphism, this cannot happen: Whether things map redundantly
to eH is enough to determine whether f is an injection:

Proposition 22.4.6. Let f : G æ H be a group homomorphism. Then the
following are equivalent:

(a) f is an injection.

(b) ker(f) = {eG}.

Proof. Suppose f is an injection. Then if f(g) = f(eG), we conclude that
g = eG. On the other hand, if f is a group homomorphism, we know that
f(eG) = eH . Thus, the kernel of f consists only of eG.

To prove the converse, suppose that f(g) = f(gÕ); we give this element a
name, say h. Because f is a group homomorphism, we know that f(g≠1) =
h≠1. Using that f is a group homomorphism again, we conclude

f(g≠1gÕ) = f(g≠1)f(gÕ) = h≠1h = eH .

In other words, g≠1gÕ œ ker(f). By assumption, this means g≠1gÕ = eG.
Multplying both sides on the left by g, we conclude gÕ = g.
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22.5 Kernels are subgroups
So kernels can be useful to see whether a function f is an injection (Propo-
sition 22.4.6). It’s nice when useful things are not just useful, but also have
properties that make them easy to understand. Kernels are quite nice.

Proposition 22.5.1. Let f : G æ H. Then ker(f) is a subgroup of G.

Proof. We have already seen that eG œ ker(f), so it remains to check that
ker(f) is closed under multiplication and inverses. Every fact we’ll need for
the proof is found in Proposition 15.4.2.

If g œ ker(f), then f(g) = eH = (eH)≠1 = f(g≠1). Thus g≠1 œ ker(f).
If g, gÕ œ ker(f), then f(ggÕ) = f(g)f(gÕ) = eHeH = eh. So ggÕ œ ker(f).

22.6 Normal subgroups
Now, let’s recall from our past lectures (Proposition 21.4.1) that every group
acts on itself by conjugation:

Cg : G æ G, Cg(x) = gxg≠1.

(Now that there is a group H floating around in the background thanks to
the homomorphism f : G æ H, I am writing x instead of h for the element
of G being acted on.)

In particular, G acts on P(G) (Proposition 21.2.3). Concretely, this action
takes any subset A and sends A to

Cg(A) = {xÕ œ G |xÕ = gxg≠1 for some x œ A.

For simplicity, we will often write

Cg(A) = gAg≠1.

We caution that gAg≠1 is a subset of G (not an element).
Let’s think a little about what this action does when A is not just a subset

of G, but a subgroup H.
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Proposition 22.6.1. Let H µ G be a subgroup, and fix g œ G. Then

gHg≠1

is a subgroup of H.

Proof. gHg≠1 contains e because H does (geg≠1 = e) and gHg≠1 is closed
under inverses:

(ghg≠1)≠1 = (g≠1)≠1h≠1g≠1 = gh≠1g≠1 œ gHg≠1

where the last statement follows because H is a subgroup (hence contains
h≠1). And gHg≠1 is also closed under multiplication:

(ghg≠1)(ghÕg≠1) = g(hhÕ)g≠1 œ gHg≠1.

Again at the end, we have used that H is a subgroup (so h, hÕ œ H =∆
hhÕ œ H).

Definition 22.6.2. Let H, H Õ µ G be subgroups. If there exists some g œ G
for which H Õ = gHg≠1, we say that H Õ

is conjugate to H.

Remark 22.6.3. As usual, H Õ is conjugate to H if and only if H is con-
jugate to H Õ. Indeed, whether two subgroups are conjugate determines an
equivalence relation on the set of all subgroups of G.

Remark 22.6.4. Let’s again remember that conjugation is a canonical sym-
metry of G. In other words, for every g œ G, the map Cg : G æ G is some
bijection of G that preserves all group-theoretic properties.

So if H and H Õ are conjugate subgroups, this means that H and H Õ look
identical up to a natural symmetry of G itself; and they share all properties
one could possibly dream of sharing. Put another way, up to symmetry of
G, conjugate subgroups are indistinguishable.

So, a subgroup H is very special if it is not identical to any other. In
other words, if H is only conjugate to itself, we know that H—as a subgroup
of G—is incredibly unique. There is no natural symmetry of G that takes H
to another group. Such subgroups are so special they have a name:

Definition 22.6.5. A subgroup H µ G is called normal if gHg≠1 = H.
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Remark 22.6.6. In analogy to symmetries of a polyhedron, finding a normal
subgroup H of G is like finding a face of a polyhedron that is always taken
to itself, regardless of the symmetry of the polyhedron. Certainly such a face
occupies a special role in the geometry of the polyhedron. Note that the face
need not be unmoved—it could be rotated into itself—and that there could
be more than one such face.

Likewise, even if H is normal, it may be that conjugation moves elements
of H—e.g., it is possible that ghg≠1 ”= h—but the point is that gHg≠1 = H
regardless. Likewise, one may have more than one normal subgroup in a
group.

Warning 22.6.7. Being “normal” is not a property that makes sense to
ask of an group H, normal is a property applying to subgroups of a given
group G. That is, “being a normal subgroup” is a concept only meaningfully
defined when we also specify the parent group. So, strictly speaking, we
should always write “H is a normal subgroup of G” to be most explicit.

As you know, checking that two sets A and B are the same can be
tedious—we have to check A µ B and B µ A. When checking whether
H = gHg≠1, there are some shortcuts. As you read the proposition below,
note that these shortcuts are rather obvious if H is finite, so these shortcuts
are mainly useful when H is not finite:

Proposition 22.6.8. Let H µ G be a subgroup, and fix g œ G. Then the
following are equivalent:

(a) For every g œ G, H = gHg≠1.

(b) For every g œ G, H µ gHg≠1.

(c) For every g œ G, H ∏ gHg≠1.

Proof. It is obvious that the first condition implies the last two. So it su�ces
to show that (b) implies (a), and that (c) implies (a).

Assume (b). Fix g œ G. We seek to show that gHg≠1 µ H. For this,
given some element k = ghg≠1 œ gHg≠1, using (b) for g≠1 to conclude
h = g≠1hÕg. This shows

k = g(g≠1hÕg)g≠1 = hÕ œ H.

The proof of (c) is similar.
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22.6.1 Examples of normal subgroups
Here are some examples of normal subgroups, straight from the definition.
Example 22.6.9. Let A be an abelian group. Then any subgroup of A is a
normal subgroup. (Make sure you verify this.)
Example 22.6.10. Let G be a group. Then the trivial subgroup {e} is
normal. Likewise, G itself is a normal subgroups.

Finally, let Z be the center of G (Definition 21.4.8). Then Z is a normal
subgroup of G.

22.7 Kernels are normal subgroups
Proposition 22.7.1. Let f : G æ H be a group homomorphism. Then
ker(f) is a normal subgroup of G.
Proof. It su�ces to show that, for every g œ G, g ker(f)g≠1 µ ker(f) (Propo-
sition 22.6.8).

So, given k œ ker(f), observe:

f(gkg≠1) = f(g)f(k)f(g)≠1 = f(g)eHf(g)≠1 = f(g)f(g)≠1 = eH .

This completes the proof.

22.7.1 Not all subgroups are kernels
Let’s just see some examples that not all subgroups are normal subgroups. In
particular, not every subgroup arises as the kernel of a group homomorphism.
Example 22.7.2. Let G = S3. Consider the subgroup generated by the
element (12):

H = {e, (12)}.

(Note this group only has two elements because (12) is an element of order
2.) Then H is not normal. For example, conjugation by g = (23) takes H to

gHg≠1 = {e, (13)}.

Evidently, H and gHg≠1 are not the same subset. Note that, in a group
like G = Sn, it is straightforward (if tedious) to check whether a given group
is normal. The reason is that we have a very concrete description of what
conjugation in G looks like (Theorem 19.5.1).
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22.8 Exercises: All about the quaternion group
In math, the word “quaternions” can refer to two kinds of things: (i) A
non-commutative ring isomorphic to R

4 additively (see Section 6.8), and (ii)
A group of 8 elements (which sits inside the group of units of the ring of
quaternions). We will explore the latter in this exercise.

Definition 22.8.1. The quaternion group Q8 is a set with 8 elements de-
noted by

{1, ≠1, i, ≠i, j, ≠j, k, ≠k}.

One endows Q8 with a group operation for which 1 is the identity element,
and for which the following relations hold:

i2 = j2 = k2 = ≠1, ij = k, (≠1)2 = 1.

It is a tedious-to-verify result that there is a unique multiplication on Q8
satisfying these relations.

Exercise 22.8.2. Fill in the multiplication table of Q8:

1 ≠1 i ≠i j ≠j k ≠k
1

≠1
i

≠i
j

≠j
k

≠k

Exercise 22.8.3. We are now going to write down every subgroup of Q8.

(a) Let ÈiÍ denote the subgroup of Q8 generated by i. Show this is a subgroup
of order 4.

(b) Let ÈjÍ denote the subgroup of Q8 generated by j. Show this is a sub-
group of order 4.

(c) Let ÈkÍ denote the subgroup of Q8 generated by k. Show this is a sub-
group of order 4.
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(d) Let È≠iÍ denote the subgroup of Q8 generated by i. Show that È≠iÍ = ÈiÍ.
For the rest of this exercise, you may assume that È≠jÍ = ÈjÍ and È≠kÍ =
ÈkÍ.

(e) Let È≠1Í denote the subgroup of Q8 generated by ≠1. Show this is a
subgroup of order 2.

(f) Now prove that any subgroup of Q8 must be trivial, or be one of the
subgroups above, or equal Q8 itself. (Hint: Suppose H µ Q8 is a sub-
group. If H is cyclic, it is equal to one of the group above, because you’ve
classified every subgroup generated by one element. If H is not cyclic,
argue that H must have order at least 5; now use Lagrange’s Theorem
to conclude H must have order 8.)

Exercise 22.8.4. (a) You wrote down all 6 subgroups of the quaternion
group in the previous exercise. Which of these are normal subgroups?

(b) We’ve seen that if G is an abelian group, then every subgroup of G is
normal. Show that the converse is false. (That is, show that there exists
some non-abelian group G all of whose subgroups are normal.)

Exercise 22.8.5. Which of the 6 subgroups you determined is the center of
Q8?


