
Lecture 23

Quotient groups and the first
isomorphism theorem

23.1 Goals

1. Understand that a subgroup being normal emerges naturally when try-
ing to define a multiplication on a quotient set.

2. Understand the group multiplication on a quotient group.

3. Understand the first isomorphism theorem.

23.2 Recollection of quotient rings

We’ve already see the idea of “quotient rings” when R is a commutative ring.
Recall that when R is a commutative ring and I is an ideal, we could define
a set

R/I

whose elements are equivalence classes of elements in R. Informally, you can
think of an element of R/I as a symbol [x] with x œ R, and we declare two
symbols to be equal, [x] = [xÕ], when x ≠ xÕ œ I. (This is the step at which
we “declared” two elements to be equal so long as their di�erence ended up
in some well-behaved subset; in this case, an ideal.)
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Then, it turned out that R/I inherits the structure of a ring. One can
naively write down

[x] + [xÕ] = [x + xÕ], [x][xÕ] = [xxÕ],

and the convenient result is that these naively written operations actually
make sense (i.e., are well-defined). For example, if we replace [x] by the equal
[x + y] for some y œ I, we find that

[x][xÕ] = [x + y][xÕ] = [(x + y)xÕ] = [xxÕ + yxÕ] = [xxÕ]

where the very last equality follows because y œ I =∆ yxÕ œ I by definition
of ideal.

Thus, there is only one part of this quotient ring story that is non-trivial:
Verifying that some naively written formula actually makes sense. And this
verification required that I be a well-behaved subset (an ideal).

A similar story will emerge for groups. Given a subgroup H µ G, one
can not only define a quotient set G/H, we can ask whether this quotient set
inherits a multiplication by writing down a naive formula. It will turn out
that this naively formula only makes sense when H is a normal subgroup of
G.

So we see another way in which “normal” arises. (Last time, we saw
that kernels had to be normal subgroups, and that normal subgroups were
“very unique” subgroups of G.) This time, we see that normalcy is a natural
condition that guarantees our ability to identify elements of G while still
maintaining a group structure in the result.

23.2.1 Motivation for quotients
Why might we be interested in producing quotient groups? (For quotient
rings, we had a natural motivation, called understanding the ring of algebraic
functions on an algebraic subset.)

I advocate for the notion of “removing redundancies in a group action.”
For example, let’s say you have a group action G ◊ X æ X. But let’s say
you learned that 20 elements of G act trivially on X—that is, there exists
20 elements g for which gx = x regardless of x œ X. You probably have
a feeling that this group action is somehow “ine�cient.” Quotienting G by
those “useless” elements creates a new group, with a new group action on X.
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As another motivation, consider a group homomorphism f : G æ H. As
you know, the kernel of f is the collection of elements in G that are “crushed”
by f ; or that are all sent to the identity element in H. If we could “quotient
out” the kernel, we could hope to retain only the features of G that remain
relevant after applying f (because we will have removed all the elements that
are sent to the do-nothing element of H).

23.3 Cosets
Let’s get started. What do we mean by “declaring two elements of G to be
equivalent up to H?”

Notation 23.3.1. Fix a subgroup H µ G. For this lecture, we will define
two natural equivalences relations on G. We say

g ≥L gÕ

if and only if there exists some h œ H for which g = gÕh. (In other words, if
gÕ can be made equal to g at the expense of multiplying by an element of H
on the right.) Equivalently, we say g ≥L gÕ if and only if (gÕ)≠1g œ H.

Finally, we write
g ≥R gÕ

if and only if g = hgÕ for some h œ H. Equivalently, we say g ≥L gÕ if and
only if g(gÕ)≠1 œ H.

Remark 23.3.2. Why are ≥R and ≥L equivalence relations? Well, note
that g ≥L gÕ means that g is in the orbit of gÕ, where G is considered as a set
with a right action from H:

G ◊ H æ G, (g, h) ‘æ gh.

Of course, “being in the same orbit as” is an equivalence relation.
Likewise, g ≥R gÕ means that g is in the orbit of gÕ under the left action

of H on G;
H ◊ G æ G, (h, g) ‘æ hg.

We give these equivalences classes, or these orbits, the following names.
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Definition 23.3.3. Let H µ G be a subgroup, and fix x œ X. We say that
the set

xH = {g œ G | g = xh for some h œ H} = {xh | h œ H}

is a left coset of H. Likewise, we say that

Hx = {g œ G | g = xh for some h œ H} = {hx | h œ H}

is a right coset of H.

Warning 23.3.4. The left/right distinction is interminably confusing. One
just has to get used to it, or look it up all the time. Indeed, a left coset gH
can be explained as the orbit of g under a right action by H on G, or as the
result of a left action of G on P(G). It is both a blessing and a curse that xH
admits an interpretation in terms of both left and right actions (of di�erent
groups on di�erent sets); the curse is that the terminology convention is
arbitrary.

Notation 23.3.5. Fix a subgroup H µ G. For this lecture only, we let [x]L
denote the equivalence class of x under ≥L. In other words,

[x]L = [xÕ]L ≈∆ x = xÕh for some h œ H.

Put another way,
[x]L = xH

is the set of all elements obtained from x by multiplying by elements of H
on the right (equivalently, by transporting the set H by multiplying by x on
the left).

Likewise, we let [x]R denote the equivalence class of x under ≥R.

Notation 23.3.6. For this lecture only, we define the quotient sets

G/≥L = {xH}.

Likewise,
G/≥R = {Hx}.

Remark 23.3.7. I hope the notation is hammering home the point that,
given some subgroup H µ G, there is no single natural notion of quotient set;
there is always a left- versus right-handed choice. Moreover, these quotient
sets almost never have a natural multiplication on them, unless H is normal.
This observation forms the crux of the next section.



23.4. NAIVE ATTEMPTS AT A PRODUCT OPERATION ON QUOTIENT SETS: THE SECOND COMING OF NORMALCY275

23.4 Naive attempts at a product operation
on quotient sets: the second coming of
normalcy

So, let’s try to naively define a multiplication on G/ ≥L. That is, can we
define an operation as

“[x]L[y]L = [xy]ÕÕ
L
?

To check that this is well-defined, we must make sure it makes sense as
follows: If [x]L = [xÕ]L, is it still true that [xy]L = [xÕy]L?

So, let x = xÕh for some h œ H. We are asking whether xy = xÕhy and
xÕy are related by the relation ≥L. This is true if and only if there exists
some hÕ œ H for which

xÕhy = xÕyhÕ.

That is (by multiplying both sides on the right by y≠1 and dividing both
sides on the left by xÕ) we are asking whether, for a given h, there exists an
hÕ for which

h = y≠1hÕy.

Upshot: if the “naive” multiplication is to be well-defined on G/ ≥L, it
must be true that H is a subset of yHy≠1. (Does this look familiar? See
Proposition 22.6.9.)

Remark 23.4.1. You could ask whether the above multiplication is well-
defined in the y variable; i.e., ask what happens when you replace y by some
≥L-equivalent yÕ = yh. Then you would have found that the multiplication is
well-defined in the y variable. So, we’re seeing some interesting consequences:
There really is a “one-sidedness” to this all, and the naive multiplication
would be well-defined if the relation behaved well “on both sides.”

Okay, well what if we try to define a naive multiplication on G/ ≥R as
follows:

“[x]R[y]R = [xy]R.ÕÕ

Is this well-defined? Again, let’s check. We know y ≥R yÕ ≈∆ y = hyÕ; so
we must try to verify that each time we are given some h œ H, we have:

xy = xhyÕ ≥R xyÕ.
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Again by definition of ≥R, for the above to hold, there must exist some
hÕ œ H for which

xhyÕ = hÕxyÕ.

Then, multiplying both sides on the left by (yÕ)≠1 and then by x≠1, the above
equality is equivalent to demanding that

xhx≠1 = hÕ.

In other words, we must demand that, regardless of x and h œ H, there must
exist some hÕ œ H for which xhx≠1 = hÕ. That is, for the naive multiplication
to be well-defined, we must have that for every x œ G, xHx≠1 µ H. (Look
familiar? See Proposition 22.6.9.)

What we have discovered is:

Proposition 23.4.2. For the naive multiplication on G/ ≥L (or on G/ ≥R)
to be well-defined, it must be true that—for every x œ G—

H µ xHx≠1 (or xHx≠1 µ H)

But let’s now apply the shortcut we learned last time (Proposition 22.6.9).
We can conclude the following:

Corollary 23.4.3. Let H µ G be a subgroup. The following are equivalent:

1. H is a normal subgroup of G.

2. The naive multiplication on G/ ≥L is well-defined.

3. The naive multiplication on G/ ≥R is well-defined.

Let’s take a moment to re-cap what just happened. We embarked on
journey to try and equate elements of G if they “di�er” by an element of
H. Here we already found that ≥L and ≥R presented two possible ways to
make such an equivalence relation. Then we asked whether this journey will
allow us to induce a multiplication on the quotient set. Very curiously, This
answer was “yes” so long as H satisfies the normalcy condition.

There are a few remarkable facts about this discovery. First, I did not
motivate the idea of “normal subgroup” by appealing to creating quotients. I
motivated it by saying normal subgroups are very special subgroups, as they
are always fixed by the natural conjugation action—they are like very special
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faces of a polyhedron. It is interesting that two questions of di�erent moti-
vations (appeals to symmetry, versus appeals to algebra) lead to a discovery
of the same condition (normalcy).

Second, we have the feeling that ≥L and ≥R are di�erent equivalence rela-
tions. (They are, in general.) So then why does a single condition (normalcy)
guarantee that both equivalence relations make the naive multiplication well-
defined?

Let’s settle this once and for all.

Proposition 23.4.4. Let H µ G be a subgroup. The following are equiva-
lent.

(a) H is a normal subgroup.

(b) ≥L=≥R. That is, x ≥L xÕ if and only if x ≥R xÕ.

(c) For every x œ G, we have an equality of sets xH = Hx.

Remark 23.4.5. In other words, H being normal doesn’t just cure the
algebraic headache of defining a multiplication on a quotient of G; it also
cures the headache of having left- and right-asymmetries! Imagine being the
first person to discover this. Things are working too well; so well that you’d
be afraid for the whole theory to be trivial. But the fact that there exist
normal subgroups in abundance signals that, in fact, this is just a miracle of
Mother Nature, and not an idea that is only useful in trivial situations.

Remark 23.4.6. Take a moment to look at both Proposition 22.6.9 and
Proposition 23.4.4. Being a normal subgroup is useful not for its conse-
quences, but for the many di�erent ways in which you can characterize it.

Proof of Proposition 23.4.4. Suppose H is a normal subgroup. Then

x ≥L xÕ ≈∆ x = xÕh for some h œ H

≈∆ x(xÕ)≠1 = xÕh(xÕ)≠1 for some h œ H

≈∆ x(xÕ)≠1 = hÕ for some hÕ œ H (because H is normal)
≈∆ x = hÕxÕ for some hÕ œ H

≈∆ x ≥R xÕ.

This shows (a) implies (b).
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Suppose (b) is true. We have already seen that xH = [x]L is the equiv-
alence class of x under ≥L. Likewise, we know that Hx = [x]R is the equiv-
alence class of x under ≥R. Thus, (b) implies that xH = Hx for all x œ X
(because an equivalence relation determines its equivalence classes).

Finally, assume (c), which in particular means xH µ Hx. This means
that for every x œ X and for every h œ H, there exists some hÕ œ H so that
xh = hÕx. By multiplying both sides by x≠1 on the right, this means that
for every x œ X and h œ H, we have that xhx≠1 = hÕ œ H. In other words,
gHg≠1 µ H. By Proposition-22.6.9, we conclude that H is normal. This
proves (c) implies (a).

23.5 Quotient groups
So we have seen that H being a normal subgroup of G is necessary to define a
natural product on quotient sets of G, and moreover, it removes the ambiguity

of right- versus left-cosets (because if H is normal, xH = Hx for any x œ
G). If it feels there is a lot to juggle, just rest assured that a subgroup
being normal is first and foremost necessary to define quotient groups; this
necessary condition also happens to be convenient.

Definition 23.5.1. Let H µ G be a normal subgroup. Then the quotient
set

G/H

is defined to be the set of equivalence classes [x] defines by the (equivalent)
equivalence relations ≥L and ≥R. In other words,

[x] = [xÕ] ≈∆ xh = xÕ for some h œ H ≈∆ hx = xÕ for some h œ H.

(These relations are the same relation by Proposition 23.4.4.) Finally, we
endow G/H with a binary operation as follows:

[x][y] := [xy]. (23.5.0.1)

(This is well-defined by Corollary 23.4.3.)
We call G/H, together with this multiplication, the quotient group of G

by H or just the quotient of G by H.

Let us justify the term quotient “group”:
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Proposition 23.5.2. G/H, endowed with the binary operation (23.5.0.1),
is a group.

The proof is quite easy once we know that multiplication is well-defined.

Proof. Let e œ G be the identity element of G. I claim [e] is the identity of
G/H. Indeed,

[x][e] = [xe] = [x], [e][x] = [ex] = [x].

Next, associativity:

([x][y])[z] = [xy][z] = [(xy)z] = [x(yz)] = [x][yz] = [x]([y][z]).

Finally, I claim that [x≠1] = [x]≠1. To see this, let’s compute:

[x][x≠1] = [xx≠1] = [e], [x≠1][x] = [x≠1x] = [e].

This concludes the proof.

Remark 23.5.3. Note that Section 23.5 is devoid of any L and R notation.
This is because, once H is normal, there is no ambiguity in what we mean
by ≥.

Notice also that “do x and xÕ di�er by an element of the kernel” also
becomes a well-defined question, precisely because ≥L=≥R.

23.6 The first isomorphism theorem
One of the motivations of quotient groups was the following: Fix a group
homomorphism f : G æ H. Then f might not be injective; equivalently,
ker(f) may be non-trivial. We reasoned that, if we “kill o�” this redundancy
by identifying those elements of G that di�er by an element of the kernel, we
should be left with exactly the portion of H that f detects. Let’s first give
a name to this “portion.”

Definition 23.6.1. Let f : G æ H be a function. The image of f , written
image(f), is the set of all elements in H hit by f . Put another way,

image(f) = {h œ H | there exists some g œ G for which h = f(g)}.
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Proposition 23.6.2. Let f : G æ H be a group homomorphism. Then
image(f) is a subgroup of H.

Proof. We know eH œ image(f) because f(eG) = eH .
Next, suppose h œ image(f). Then there exists g œ G so that f(g) = h.

Hence f(g≠1) = f(g)≠1 = h≠1 is also in the image of f . This shows that
image(f) is closed under taking inverses.

Finally, if h, hÕ œ image(f), choose g, gÕ œ G for which f(g) = h and
f(gÕ) = hÕ. Then

hhÕ = f(g)f(gÕ) = f(ggÕ)

so hhÕ is in the image of f . (It is hit by ggÕ.)
This completes the proof.

The following theorem makes our intuition precise:

Theorem 23.6.3 (The first isomorphism theorem). Let f : G æ H be a
group homomorphism. Then f induces an isomorphism

G/ ker(f)
≥=≠æ image(f).

Thus, whenever there is a group homomorphism from G to H, one can
realize a quotient of G as isomorphic to some subgroup of H.

You will prove this theorem in the exercises.

Remark 23.6.4. Note that you know that ker(f) is a normal subgroup
(Proposition 22.7.1). Thus, you know what we mean by the quotient group
G/ ker(f) (Section 23.5).

Example 23.6.5. Let f : S3 æ Z/2Z be the function sending two-cycles to
1 œ Z/2Z, and sending e and three-cycles to 0. You can check that f is a
group homomorphism.

Then ker(f) = {e, (123), (132)} and the first isomorphism theorem tells
us

S3/ ker(f)
≥=≠æ Z/2Z.

Example 23.6.6. Let det : GL2(R) æ R
◊ be the determinant homomor-

phism. The kernel is the set of all matrices with determinant 1, otherwise
known as SL2(R). Note that det is a surjection—given any real number t,
the diagonal matrix with diagonal entries 1, t has determinant t.
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Thus, the first isomorphism theorem tells us that the map

GL2(R)/SL2(R) æ R
◊, [A] ‘æ det(A)

is a group isomorphism.
(Note that all kinds of non-trivial things have happened here. First, it

might not have been so obvious that SL2(R) is a normal subgroup of GL2(R).
Second, it is even less obvious that one could compute the quotient by SL2(R)
as such a concrete group!)

23.7 Exercises: The first isomorphism theo-
rem

Exercise 23.7.1. Let f : G æ H be a group homomorphism, and suppose
K µ G a normal subgroup. Assume that for every k œ K, we have that
f(k) = eH .

(a) Show that the function

fmodK : G/K æ H, [g] ‘æ f(g)

is well-defined. (That is, if gÕ ≥ g, prove that f(gÕ) = f(g). Here, ≥
is the equivalence relation determined by the normal subgroup K. See
Section 23.4.)

(b) Show that image(f) = image(fmodK).

(c) If K = ker(f), show that fmodK is an injection.

Exercise 23.7.2. Let f : G æ H be a group homomorphism. Show that
the induced function

G æ image(f), g ‘æ f(g)

is a surjection and a group homomorphism.

Exercise 23.7.3. Fix a group homomorphism f : G æ H. Prove the first
isomorphism theorem (Theorem 23.6.3).
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