
Lecture 26

Symmetries of a cube

26.1 Goals
1. Get practice using group actions to figure out orders of groups

2. See an example of relating a geometrically defined group (symmetries
of a cube) to a group where we can perform computations more quickly

26.2 Counting symmetries
Let’s count the number of rotational symmetries that the platonic solids have.
For this, it will help if you’ve played Dungeons and Dragons, or otherwise
used dice with 4, 6, 8, 12, or 20 faces.

Definition 26.2.1. Let P be a polyhedron (which we think of as a subset
of R3). A rotational symmetry of P is rotation of R3 that sends P to P . Put
another way, a rotational symmetry of P is a bijection from P to itself that
can be expressed as a rotation in three-dimensional space.

Example 26.2.2 (Number of rotational symmetries of a cube). Imagine you
have a cube—or a 6-sided die—sitting on a table. How many distinct ways
can you re-orient the cube? Put another way, if you imagine the cube is a
(very strangely designed) mattress, how many ways are there to reset the
mattress into its frame?

Here is one way to count the number of orientations of a cube: There are
exactly 6 di�erent faces that can face upward, and one you know which face
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Figure 26.1: The five platonic solids, taken from www.polyhedra.net. The
righthand image labels some of the faces to help distinguish various symme-
tries.

of a cube is facing upward, you only need to know which of the four adjacent
faces is facing a fixed direction. Six times four is twenty-four, so there are
twenty-four possible orientations of the cube. You can find a list of all 24
orientations at this image, where the cube is labeled as a standard six-sided
die for ease of visualization:

https://www.istockphoto.com/vector/isometric-icons-of-3d-dice-set-gm957782852-261537150

More generally, suppose you have a regular polyhedron/die P with F
faces, each of which is a regular k-gon. When you roll the die, there are
exactly F faces that could end up face down on the table. Once you know
that your die is oriented so that a particular face is touching the table, there
are exactly k rotations you can perform (on the face touching the table, and
hence on the polyhedron itself).

Remark 26.2.3. If your polyhedron were not regular, this rotation might
not send P back to itself; but because P is regular, this rotation does send
the set P to the set P .

Let us assume that the following regular polyhedra exist. (They do, but
proving that they exist is quite involved.) They are also called the platonic
solids.
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• The tetrahedron, which has 4 faces, each of which is an equilateral
triangle.

• The cube, which has 6 faces, each of which is a square.

• The octahedron, which has 8 faces, each of which is an equilateral
triangle.

• The dodecahedron, which has 12 faces, each of which is a regular pen-
tagon.

• The icosahedron, which has 20 faces, each of which is an equilateral
triangle.

Then the preceding discussion shows the following:

Proposition 26.2.4. The platonic solids have the following number of ro-
tational symmmetries:

• The tetrahedron has 4 ◊ 3 = 12 rotational symmetries.

• The cube has 6 ◊ 4 = 24 rotational symmetries.

• The octahedron has 8 ◊ 3 = 24 rotational symmetries.

• The dodecahedron has 12 ◊ 5 = 60 rotational symmetries.

• The icosahedron, has 20 ◊ 3 = 60 rotational symmetries.

26.3 Identifying the group of symmetries of
the cube

Proposition 26.2.4 tells us that the group of rotational symmetries of a cube
is some group of order 24. But is it a group we can understand?

Here is one strategy for trying to understand a group G. (i) Find a
set X on which G acts. (ii) Write down the group homomorphism G æ
Aut(X) encoding the group action. (iii) Study the image and kernel of this
homomorphism.
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Example 26.3.1. For example, if the homomorphism G æ Aut(X) has a
non-trivial kernel, you have found a non-trivial normal subgroup of G, which
is already a huge accomplishment. On the other hand, if the kernel is trivial,
then you have identified G with a subgroup of Aut(X).

Warning 26.3.2. In general, it is very hard to study subgroups of Aut(X),
but you at least have a concrete understanding of G. (When X is a finite set
with n elements, you can perform concrete computations in the symmetric
group Aut(X) ≥= Sn.)

In fact, any finite group is a subgroup of S|G|. This is called Cayley’s
theorem, and can be proven by studying the action of G on itself by multi-
plication.

Discussion time. I’d like you to spend the next thirty minutes or so
exploring various sets that the group of rotational symmetries of a cube acts
on.
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Let G be the group of rotational symmetries of a cube. We already
know |G| = 24. Incidentally, 24 is a factorial; so we might hope that G is
isomorphic to a symmetric group (specifically, that G ≥= S4).

So, is there some geometrically defined collection of four objects on which
G acts?

It takes some thinking, but here is one: The set of diagonals of the cube.
More precisely:

Definition 26.3.3 (Diagonals). Given any vertex v of the cube, let v denote
the vertex of the cube farthest away from v. The segment between these two
vertices is called the diagonal between v and v.

Remark 26.3.4. How many diagonals are there? There is one for every
pair of opposite vertices; hence there are half as many diagonals as there are
vertices. Since the cube has 8 vertices, we conclude there are 4 diagonals.

Remark 26.3.5. Let � be the set of diagonals of the cube. (There are
4 elements in �.) Let’s make sure that G acts on �. Indeed, if g œ G
is a rotational symmetry of the cube, we are guaranteed that g sends ver-
tices to vertices. On the other hand, g must preserve distances—meaning
dist(x, xÕ) = dist(gx, gxÕ) for every pair of points x, xÕ in the cube—so if v is
the point farthest from v, it follows that gv is the point farthest from gv. In
particular, g of a diagonal will again be a diagonal.

So we have a function G æ Aut(�) given by the group action of Re-
mark 26.3.5. By choosing a labeling of the diagonals, let’s identify � with
the set {1, 2, 3, 4} to we can identify Aut(�) with S4. We thus have a group
homomorphism

G æ S4. (26.3.0.1)

Proposition 26.3.6. The above group homomorphism is an injection.

Proof. It su�ces to check that the kernel is trivial. So suppose that g is a
symmetry of the cube for which every diagonal is sent to itself. This then
implies (make sure you think about why) that g must send every vertex v
to itself, or send every vertex v to its opposite v. But there is no rotation
of Euclidean space that takes the vertices of the cube and send each to their
opposite. (See Lemma 26.3.7 below.)

So we have seen that if g is in the kernel, g = e. This completes the
proof.
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We needed a geometric fact (isn’t that satisfying?) in proving the alge-
braic proposition above. Let’s see the Lema:

Lemma 26.3.7. There is no rotation of the cube which sends every vertex
v to its opposite v.

Proof. Choose your favorite face f of the cube. For sake of concreteness,
let’s imagine that the cube is sitting flatly on a table, and that f is the face
opposite the table—i.e, the face you can see by looking down at the cube.

Now, as you look down at the cube (and hence see the face f), let’s label
your favorite vertex of this face as 1, and then keep labeling in counter-
clockwise order 1, 2, 3, 4:

1 2

34

Now note that, regardless of what rotational symmetry g we apply to the
cube, if we consider the face g(f) and look at the face from outside the cube,
the vertices of g(f) can be labeled g(1), g(2), g(3), g(4) in counter-clockwise
order.

However, suppose g is a symmetry that sends every vertex v to its diagonal
opposite v. (Necessarily, the face f is then sent by g to the face opposite
f—the unique face not adjacent to f .) Then, looking at g(f) from outside
the cube, the vertices of g(f) must be labeled as follows:

3’ 4’

1’2’

This is not in counterclockwise order; hence there is no rotation g acting this
way on vertices.

Let’s recoup. We’re studying a group homomorphism

G æ Aut(�) ≥= S4
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where � is a set with four elements: the four diagonals of the cube. By enu-
merating the four diagonals, we identify the group of bijections Aut(Delta)
with S4.

Proposition 26.3.6 tells us that the above homomorphism is an injection.
On the other hand, both the domain and the codomain have order 24.1 Any
injection between finite sets with the same cardinality must be a bijection,
so in particular, we conclude:

Theorem 26.3.8. The group of rotational symmetries of a cube is isomor-
phic to S4.

26.4 Using the identification
Theorem 26.3.8 is very useful.

Example 26.4.1. For one thing, I think you’re kind of tired of writing
out group multiplication tables. It would have been rather annoying, and
time-consuming, to write out all 24 elements of G and write out how they
multiply with each other. (I am assuming not many of you want to write out
a 24-by-24 table.)

Theorem 26.3.8 is a promise that we can understand all the group mul-
tiplication in G simply by applying the group isomorphism, and converting
the multiplication in G to multiplication in S4.

And multiplication in S4 is easy! Using cycle notation, we have become
quite comfortable with composing bijections.

For sake of having precise discussions, let’s set some notation by giving
our diagonals names.

Notation 26.4.2 (The diagonals Di). Choose a face A of the cube once and
for all. Then, choose a numbering 1, 2, 3, 4 of the vertices, as before choosing
the ordering to be counter-clockwise when the face is viewed from outside
the cube.

For each i, we let Di denote the diagonal passing through the vertex i
and its opposite.

1
For S4, we already know this, as Sn has order n!. For G, the symmetries of the cube,

this is Proposition 26.2.4.
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Notation 26.4.3. We let fl : G æ S4 denote the group isomorphism from
Theorem 26.3.8; it is defined in (26.3.0.1).

Example 26.4.4 (Rotations about an axis orthogonal to one face). Let A
be the face we chose in Notation 26.4.2. We let RA be 90-degree rotation
of the cube defined as follows: The axis of rotation is perpendicular to A
and passes through the center of A, while we demand that the rotation is
90-degrees counter-clockwise when viewed from outside the cube toward A.

This rotation RA sends the vertex 1 to 2, the vertex 2 to 3, and so forth;
thus it has the following e�ect on diagonals:

D1 ‘æ D2, D2 ‘æ D3, D3 ‘æ D4, D4 ‘æ D1.

In other words,
fl(RA) = (1234).

Knowing that fl is a group homomorphism (and doing no further geometry),
we can then deduce

fl(R2
A

) = (13)(24), fl(R3
A

) = (1432).

In words: If we rotate the cube by 180 degrees about the axis normal to A,
this has the e�ect of swapping the diagonal D1 with the diagonal D3, and D2
with D4. If we rotate by 270 degrees counterclockwise (that is, 90 degrees
clockwise), then we cycle the diagonals by sending D1 to D4, D4 to D3, and
so forth.

It is straightforward to check these claims geometrically, too, and not just
take them as a consequence of composition in S4.

Example 26.4.5. Now let B be the face of the cube which, when viewed from
outside the cube, has vertices 1, 2, 4Õ, 3Õ in counter-clockwise order (where 4Õ

is the vertex diagonally opposite 4).2
Let RB denote 90-degree rotation, counter-clockwise as viewed from out-

side the cube, about the axis normal to B. Then RB acts as follows on
vertices:

1 ‘æ 2, 2 ‘æ 4Õ, 4Õ ‘æ 3Õ, 3Õ ‘æ 1
and hence its e�ect on Diagonals is:

D1 ‘æ D2, D2 ‘æ D4, D4 ‘æ D3, D3 ‘æ D1.

2
Note we are still using the numbering of vertices from Notation 26.4.2.
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In other words,
fl(RB) = (1243).

Knowing that fl is a group homomorphism (and doing no further geometry),
we can then deduce

fl(R2
B

) = (14)(23), fl(R3
B

) = (1342).

Example 26.4.6. It is not so obvious how to geometrically interpret RBRA

– the rotation obtained by first doing RA, and then applying RB. But what
this composition does to diagonals is easy to deduce by using composition in
S4:

fl(RBRA) = fl(RB)fl(RA) = (1243)(1234) = (142).

So, amazingly, whatever RBRA is, it is a rotation that fixes the diagonal D3.
(This means RBRA will send the vertex 3 to itself and 3Õ to itself—in which
case it is some rotation about D3—or swap the vertices 3 and 3Õ.)

Let me say something non-trivial here. I promise that you can now study
the cube to name the unique rotation that acts by (142) on the set of diago-
nals. However, this requires work! Why? It’s because the proof of surjection
of fl was formal—we just used that G and S4 had the same cardinality and
that fl is injective. In particular, we never had to prove by hand that fl is sur-
jective, meaning we never had to take a permutation in S4 and tell ourselves
which rotation of the cube gives rise to this permutation.

Thus, the geometry of understanding which rotations induce permuta-
tions like (142) is precisely the ingredient one would use to prove by hand
that fl is a surjection.

In case you are curious, RBRA acts as follows on the vertices:

(14Õ2Õ)(21Õ4)(33Õ)
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