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1 The van Kampen theorem

The van Kampen theorem allows us to compute the fundamental group of a space from
information about the fundamental groups of the subsets in an open cover and there in-
tersections. It is classically stated for just fundamental groups, but there is a much better
version for fundamental groupoids:

• The statement and proof of the groupoid version are almost the same as the statement
and proof for the group version, except they’re a little simpler!
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• The groupoid version is more widely applicable than the group version and even when
both apply, the groupoid version can be simpler to use.

In fact, I’m convinced the only disadvantage of the groupoid version is psychological:
groups are more familiar than groupoids to most people.

1.1 Version for the full fundamental groupoid

By π≤1(X) we mean the fundamental groupoid of X, which is a category whose objects
are the points of X and whose morphisms from p to q are the homotopy classes (relative
to endpoints) of paths in X from p to q. It is easy to see these form a category where
composition is concatenation of paths, and that every morphism has an inverse (so the
category is a groupoid) given by the time-reversal of the path. The classical fundamental
group of X at the basepoint x0 ∈ X is homπ≤1(X)(x0, x0).

Theorem 1. Let X be a space and U and V two open subsets of X such that X = U ∪ V .
Then the following diagram, in which all morphisms are induced by inclusions of spaces, is
a pushout square of groupoids:

π≤1(U ∩ V ) //

��

π≤1(U)

��

π≤1(V ) // π≤1(X)

Notice that X itself is the push out in the category of topological spaces of the diagram
of inclusions U ← U ∩ V → V ; van Kampen’s theorem says that this particular type of
pushout is preserved by the functor π≤1.

Proof. We’ll directly show that π≤1(X) satisfies the universal property of the pushout. Con-
sider a commutative square of groupoids

π≤1(U ∩ V ) //

��

π≤1(U)

Γ

��

π≤1(V ) Λ // G

where G is some arbitrary groupoid. We need to show that this data induces a unique
morphisms of groupoids Φ : π≤1(X) → G. Let’s see the definition is forced so there is at
most one such morphism:

• An object of π≤1(X) is a point x ∈ X and so lies in either U or V (or both). If x ∈ U ,
we are forced to set Φ(x) = Γ(x); if x ∈ V , we are forced to set Φ(x) = Λ(x). If
x ∈ U ∩ V , these definitions agree by the commutative square above.
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• A morphism in π≤1(X) is (the homotopy class of) a path α in X. If α lay solely in
U , we would be forced to set Φ(α) = Γ(α). Similarly if α were in V , the definition
would be forced. In general, we can always split up α into a composition α1 ◦ · · · ◦ αn
of a bunch of paths, each of which lies completely in U or completely in V , and we are
forced to set Φ(α) = F1(α1) ◦ · · ·Fn(αn) where each Fi is either Γ or Λ as necessary.

So there is at most one choice of Φ; it only remains to show that this choice works, i.e.,
that the above description is independent of the choice of decomposition and that it really
defines a functor. It is clear that it is functorial if well-defined, so let’s just show it is well
defined. Say that α and β are two homotopic paths between the same pair of points in X
and let H : [0, 1] × [0, 1] → X be a homotopy between them. By the Lebesgue covering
lemma, we can subdivide the square into tiny little squares so that each one is sent by H to
either U or V . Furthermore, we can arrange that the subdivision of [0, 1] × {0} refines the
subdivision we chose to define Φ(α) and similarly the subdivision of [0, 1] × {1} refines the
subdivision used for Φ(β).

For each tiny square, we get an equality in the fundamental groupoid of either U or V
between composites of the paths obtained by restricting H to the sides: H|right ◦ H|top =
H|bottom◦H|left. Applying either Γ or Λ as the case maybe, we get an equality in the groupoid
G. Adding them all together proves that Φ(α) = Φ(β).

There is also a more general version of the theorem for open covers consisting of an arbi-
trary number of open sets, but (1) the basic two-set version covers most of the applications,
(2) the proof of the general version is pretty much the same as the version for two sets, only
more difficult notationally. Here’s a statement:

Theorem 2 ([2, Section 2.7]1). Let U be an open cover of a space X such that the intersection
of finitely many members of U again belongs to U . We can regard U as the objects of a
category whose morphisms are simply the inclusions. The fundamental groupoid of X is the
colimit of the diagram formed by restricting the fundamental groupoid functor π≤1 to the
category U ; in symbols: π≤1(X) = colimU∈U π≤1(U).

1.2 Version for a subset of the base points

There is also a version for the fundamental groupoid on a subset of the basepoints. For a set
A ⊆ X, let π≤1(X,A) denote the full subcategory of π≤1(X) on the objects in A. For the
van Kampen theorem to hold for these π≤1( · , A), A needs to satisfy the following condition:
A contains at least one point in each component of each of U ∩ V , U and V . It is actually
this version that we are really after, since the whole fundamental groupoid is impractical in
that it contains a lot of redundant information.

Our strategy for proving this version will be to deduce it from the version for the full
fundamental groupoid. The hypothesis on A guarantees that for W = U ∩ V, U, V,X the

1Note that May states this with an unnecessary hypothesis: that each open be path connected. His proof,
however, never uses it and establishes the version stated here.
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groupoid π≤1(W,A) is equivalent to π≤1(W ) and one might hope that replacing each groupoid
in a pushout square by an equivalent groupoid yields a new pushout square. This is not quite
right: replacing each groupoid by an isomorphic groupoid would of course give a new pushout
square, but isomorphisms are precisely the relation between objects that pushouts are meant
to preserve, they won’t preserve mere equivalence. There is a more flexible notion of pushout
for groupoids (variously called, weak pushout, homotopy pushout or 2-categorical pushout)
that is invariant under equivalence, but we won’t talk about that here.

Instead what we’ll do to deduce the version for π≤1( · , A) from the version for the full
groupoid is (1) show that the commutative square

π≤1(U ∩ V,A) //

��

π≤1(U,A)

��

π≤1(V,A) // π≤1(X,A)

is a retract of the square for the full fundamental groupoids and (2) using the general category
theoretical fact that a retract of a pushout square is also a pushout square.

A retract of an object X is another object Y with a pair of morphisms i : Y → X and
r : X → Y such that r ◦ i = id. We think of i as including Y inside X and r as being a
retraction of X onto Y . When we say a commutative square ρ is a retract of another square
σ we mean that each corner of ρ is a rectract of the corresponding corner of σ, but more than
just this: all of the inclusions and retractions have to be compatible with one another in the
sense that the cubical diagram formed by the two squares and the four inclusions commutes,
as does the cube formed by the two squares and the four retractions. It only takes, as one
says, a straight-forward diagram chase to prove that a retract of a pushout square must also
be a pushout square.

Exercise. Prove that a retract of a pushout square is also a pushout square.

Now, in our case it is easy to show the second square is a retract of the first. The
inclusions are just that: inclusions π≤1(X,A)→ π≤1(X). The retractions are built as follows.
To retract π≤1(X) onto π≤1(X,A) just pick, for every point x ∈ X a path αx from x to some
point a ∈ A, but do this in such a way that if x is already in A, αx is the identity morphism
at x. (We can always pick these paths because the hypothesis include that A has at least one
point in each component of each of the spaces we use.) Then the retraction we’re defining is
the morphism that sends each x to the other endpoint of αx, and each morphism β : x→ y
to the morphism αy ◦ β ◦ α−1

x . To ensure that the cube formed by the two van Kampen
squares and the four retractions commutes, simply always pick the same αx for x in all of
the groupoids it appears in.
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2 Applications

2.1 First examples

We can use the van Kampen theorem to compute the fundamental groupoids of most basic
spaces.

2.1.1 The circle

The classical van Kampen theorem, the one for fundamental groups, cannot be used to prove
that π1(S1) ∼= Z! The reason is that in a non-trivial decomposition of S1 into two connected
open sets, the intersection is not connected. That is not an issue for the groupoid version.
Take U and V to be semicircles, intersecting at two points A = {p, q}.
Remark. Technically, we need U and V to be open, so we should take them to be open arcs
slightly bigger that semicircles, and then their intersection will be a pair of small arcs, one
containing p, one containing q. This makes no essential difference and only complicates the
language, so we will silently use closed sets whenever we want, with the understanding that
it should be checked that fattening them slightly will produce open sets that van Kampen
applies to.

Since each of U and V is contractible, both π≤1(U,A) and π≤1(V,A) are the groupoid with
two objects, p and q and a single isomorphism p→ q. Also, π≤1(U ∩V,A) is just the discrete
groupoid on two objects; it has no non-identity morphisms. The pushout π≤1(S1, A) is
therefore a groupoid on two objects p and q, with two isomorphisms u, v : p→ q and beyond
that is as free as possible. So, for example, all the composites (v−1 ◦u)n are distinct (because
there is no reason for them not to be). We get that π1(X, p) = {(v−1 ◦ u)n : n ∈ Z} ∼= Z.

2.1.2 Spheres

We can easily show that all Sn for n > 1 are simply-connected. Decompose Sn as two hemi-
spheres H1 and H2, intersecting along the equator, which is an Sn−1. Since both hemispheres
and their intersection are connected, the group version of van Kampen applies, and therefore
π1(Sn) = π1(H1)∗π1(Sn1 ) π1(H2) is the trivial group: both H1 and H2 are contractible (notice
that it doesn’t matter what π1(Sn−1) is.

More generally, this shows that the suspension ΣX of any connected space X has zero
fundamental group.

2.1.3 Glueing along simply-connected intersections

If X = U ∩V where U and V are connected and U ∩V is simply-connected, then we get that
π1(X) = π1(U) ∗ π1(V ), where ∗ denotes the free product of spaces, which is the coproduct
in the category of groups, or the pushout in groupoids over the discrete groupoid with one
object. This simple idea has several applications:
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2.1.3.1 Wedges of spaces If each Xi is a connected space with a reasonable base point
(i.e., the base point has a contractible neighborhood), we get that π1(

∨n
i=1 Xi) = π1(X1) ∗

· · · ∗ π1(Xn). For example, the fundamental group of a bouquet of n circles is the free group
on n generators.

2.1.3.2 Removing a point from a manifold. Given an n-dimensional manifold M ,
with n ≥ 3, how are the fundamental groups of M and M \ {p} related? We can use van
Kampen “in reverse” to answer this. Let U be a small neighborhood of p, homeomorphic
to a ball in Rn and let V = M \ {p}. Then U ∩ V ' Sn−1 which is simply-connected for
n− 1 > 1, so we obtain π1(M) = π1(M \ {p}) in that case. 2

2.1.3.3 Attaching cells. The argument in the previous parapgraph shows more gen-
erally that attaching a cell of dimension 3 or higher to a CW complex does not change its
fundamental groupoid. The argument in the footnote shows that a attaching a 2-dimensional
cell kills the loop it is attached to (and does nothing else).

2.1.3.4 Connected sums. We can also use the observation in the first paragraph to
compute fundamental groups of connected sums of manifolds. Recall that given two smooth
n-dimensional manifolds M and N , the connected sum M#N is constructed by removing a
ball from each of M and N and glueing these along their boundary, (M \ int(Dn))∪∂Dn (N \
int(Dn)). If n ≥ 3, we simply get a free product π1(M#N) = π1(M \Dn) ∗ π1(N \Dn) =
π1(M) ∗ π1(N).

2.1.4 Compact surfaces

Computing the fundamental groups of compact surfaces is easily done by starting with a
construction of the surface as the result of identifying some sides of a polygon. For example,
the Klein bottle X is obtained from a rectangle

a //

b

��

b

��

a−1
oo

by glueing opposite sides as indicated by the arrows. To compute its fundamental group,
draw a smaller square inside this one, let U be the filled in smaller square, and let V be
“frame” around it. Then U ∩ V is the smaller square and is homotopy equivalent to S1, U
is contractible and V is homotopy equivalent to a wedge of two circles: the paths a and b
indicated in the picture (exercise: why are these loops?). We get that π1(V ) is free on a
and b, and the inclusion U ∩ V → V , sends a generator of π1(U ∩ V ) to b−1aba as we see by

2If n = 2, we get U ∩ V = S1 with π1 = Z, so the pushout π1(M) = π1(M \ {p}) ∗Z 1 just kills the loop
around U ∩ V ; i.e. π1(M) = π1(M \ {p})/N where N is the normal subgroup generated by a loop around
U ∩ V (and all its conjugates).
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going around the square in the picture clockwise. This means that the fundamental group
of the Klein bottle is 〈a, b〉 ∗Z 1 = 〈a, b : aba = b〉.

Exercise. Using the standard construction of the compact orientable surface of genus g as
the result of identifying sides of a 2g-gon, prove that its fundamental group is 〈a1, b1, a2, b2, . . . , ag, bg :
[a1, b1][a2, b2] · · · [agbg] = 1〉.

Exercise. Prove that the fundamental group of the real projective plane is cyclic of order
2.

2.2 Four dimensional manifolds can have arbitrary finitely gener-
ated fundamental group

The result in 2.1.3.3 easily implies that given any finitely presented group 〈a1, . . . , am |
r1, . . . , rn〉 can be obtained as the fundamental group of a finite CW-complex with a single
0-cell, a loop for each ai and a 2-cell attached to each ri.

3 A geometric version of this
construction shows that any finitely presented group is the fundamental group of some
smooth 4-manifold:

By 2.1.3.4, the connected sum of m copies of S1× S3 has fundamental group isomorphic
to the free group on a1, . . . , am. Now we can impose each relation rj as follows: realize rj as
a simple loop. A tubular neighbourhood of this looks like S1 ×D3. Do surgery and replace
this tubular neighbourhood with S2 × D2, which has the same boundary: ∂(S1 × D3) =
S1 × S2 = S2 × S1 = ∂(S2 ×D2) . This kills rj.

2.3 The Jordan Curve theorem

Now we are going to prove the Jordan Curve Theorem. This is a very well known result,
famous for being totally believable, almost obvious even, but surprisingly hard to prove.
There are a number of versions of the theorem so I should say precisely which one we’ll be
proving.

Theorem 3 (The Jordan Curve Theorem.). Let C be a simple closed curve in the sphere,
that is C is a subset of S2 which is homeomorphic to a circle. Then, the complement of C
has exactly two connected components.

We will present Ronnie Brown’s proof [1, Section 9.2] with a few minor simplifications.
A further refinement of the theorem, which we will not prove here, is that each of the two
components of the complement of C has boundary equal to C. This is also proved in Brown’s
book. The plan of the proof is to show that, on S2:

1. The complement of an arc is connected.

3And if you don’t care about finiteness, any group can be similarly obtained from a CW-complex with
possibly infinitely many 1- and 2-cells.
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2. The complement of a simple closed curve has exactly two components, by showing

(a) it is disconnected, and

(b) it cannot have 3 or more components.

Steps 1 and 2b will both use a nice lemma on free groups inside pushouts of groupoids
that I think should be motivated before it’s stated and proved, so we won’t do the proof in
logical sequence; rather, we’ll do step b (assuming a) first, then the lemma, and then steps
a and c.

2.3.1 The complement of a simple closed curve has exactly two components

In this part we will assume that the complement of any arc (i.e., a subset homeomorphic to
a closed interval) on S2 is connected. This will be proved a little later.

Throughout this section we’ll let C be a subset of S2 homeomorphic to S1, and let
C = D ∪ E where D and E are arcs that meet in exactly two points a and b. We’ll also let
U = S2 \D, V = S2 \ E, so that U ∩ V = S2 \ C and U ∪ V = S2 \ {a, b} =: X.

Note that, since C,D and E are all compact, they are closed subsets of S2. Moreover,
since U , V and X are open subsets of S2 (and S2 is locally path-connected), we won’t need
to distinguish between connectedness and path-connectedness for these subspaces.

Proposition 1. The complement of a simple closed curve is disconnected.

Proof. Assume it were connected. Then we can use van Kampen’s theorem (even the fun-
damental group version!) to get that

π≤1(U ∩ V ) //

��

π≤1(U)

��

π≤1(V ) // π≤1(X)

is a pushout square of groups. The lower right corner we know: it is just Z, since X is (home-
omorphic to) an (open) annulus, and thus equivalent to a circle. We’ll get a contradiction
by showing that both π1(U) → π1(X) and π1(V ) → π1(X) are trivial morphisms sending
everything to zero.

It should be intuitive that these morphisms are indeed zero: we’re saying that if you have
a loop on a sphere that avoids some arc, then the loop can be contracted to a point without
going through the endpoints of the arc. To prove it, let’s just put one endpoint off limits to
begin with: S2 \ {b} is homemorphic to R2 (by stereographic projection, for example), and
we can even pick a homemorphism for which a maps to the origin in the plane. Then the
arc D corresponds to some curve starting at the origin and going off to infinity, and if we
pick a parametrization α : [0,∞)→ R2 for this curve, what we’re trying to show is that any
loop γ in the plane avoiding the image of α can be contracted to a point while avoiding the
origin. Our strategy for that is to translate γ by the vector −α(t): when t = 0 we just get
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γ, but as t→∞, γ gets pushed away from the origin until it “looks tiny when viewed from
the origin” and then be contracted.

More formally, since the image of γ is compact, it lies inside some big ball of radius R
around the origin and there is a t0 such that |α(t0)| > R. Consider the homotopy Ht(s) =
H(t, s) = γ(s)− α(t). Because the loop γ avoid the image of α, H never passes through the
origin. Also, we have H0 = γ and Ht0 is a loop that lies inside the ball B of radius R with
center α(t0). Since |α(t0)| > R, B does not contain the origin and the loop Ht0 can be safely
contracted to a point inside of B. This shows that the inclusion U → X, induces the zero
map on π1, as required.

Proposition 2. The complement of a simple closed curve has exactly two components.

Proof. We’ve seen it’s disconnected, so it has at least two components; we need only show it
can’t have three or more components. To do this we’ll apply van Kampen to U and V again
(but this time we do need the groupoid version). Take a set A of base points that consists
of exactly one point from each component of S2 \ C = U ∩ V . Notice that since U , V and
X are connected we don’t have to worry about A failing to meet some component of them.
Now, van Kampen gives us a pushout of groupoids:

π≤1(U ∩ V,A) //

��

π≤1(U,A)

��

π≤1(V,A) // π≤1(X,A)

Again, we know all about the lower right corner. In particular, if we take a point p ∈ A, we
know that the fundamental group of X based at p is just Z. But here is a heuristic argument
indicating that this is not consistent with the pushout square: we get |A| − 1 independent
loops at p coming from following some path from p to q ∈ A in U and coming back along
some path in V . The fact that in U ∩V there are no paths from p to q tells us these loops in
X are non-trivial and have no relations between them. This (correctly) suggests we actually
get the free group on |A| − 1 generators sitting inside π1(X, p), which shows |A| = 2.

All that remains is make the heuristic precise, which is the next section.

2.3.2 A lemma about pushouts of groupoids

Lemma 1. Consider a pushout square of groupoids,

A //

��

B

��

C // G

where

• A, B, C, G all have the same objects and the morphisms in the square are all the
identity on objects,
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• A is skeletal, i.e., a disjoint union of groups, and

• B and C are connected.

In this situation, for any object p in G, the automorphism group of p in G contains a
free group on n− 1 generators, where n is the common number of objects of A, B, C and G.

Proof. Let D be the discrete groupoid on the common set of objects of A, B, C and G,
and let I be the indiscrete groupoid on the same set of objects. The unique morphisms
D → A→ D which are the identity on objects show that D is a retract of A. We also have
that I is a retract of both B and C and indeed the retractions B → I and C → I are again
determined uniquely by being the identity on objects. The inclusions I → B and I → C
are not unique; we will choose them as follows: for each object q 6= p, choose a morphism
βq : p → q in B and a morphism γq : p → q in C, then I → B is determined uniquely by
asking that the unique morphism p → q in I is sent to βq, and similarly for the morphism
I → C.

These retractions are compatible in the sense that they make the diagram4

D //

��

I

I

a retract of

A //

��

B

C

and one can easily check that this induces a retraction of the pushouts. So, if F is the
pushout of the first of the two diagrams above, then AutG(p) has AutF (p) as a retract; we
will show that this group, AutF (p), is free on n− 1 generators. To do so, notice that both D
and I are free groupoids on a directed graph: D is free on the empty graph E with n vertices
and no edges, and I is free on any tree with n vertices, but to fix ideas let’s pick one: let
T be the “star” with center p, i.e., a directed graph which one edge going from p to every
other vertex q. Since the free groupoid functor is a left adjoint, the pushout of I ← D → I
is the free groupoid on the pushout of the directed graphs T ← E → T . This pushout of
directed graphs is easy to describe: it simply has two edges, say aq and bq, going from p to
any other vertex q. The automorphism group of p in the free groupoid on this doubled tree
is clearly free on the n− 1 generators of the form b−1

q aq.
Notice that in the setting where we used this lemma in the previous (where, in particular,

the pushout square of groupoids we’re talking about comes from van Kampen) the images
of the generators b−1

q aq of AutF (p) in AutG(p) are precisely the morphisms β−1
q αq described

in the heuristic argument at the end of previous section (“going from p to q along some path
in U and coming back along some path from q to p in V ”).

2.3.3 The complement of an arc on S2 is connected

By an arc P ⊂ S2 we just mean a subset of S2 which is homeomorphic to S1. We will say
P separates two points a and b if they lie in different components of S2 \ P .

4In the diagram below all the morphisms are identities on objects.
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Lemma 2. If an arc P separates a and b and P = P1 ∪ P2 with the arcs P1 and P2 meeting
at a single point p, then at least one of P1 and P2 separates a and b.

Proof. Assume neither P1 nor P2 has disconnected complement. Take a set of basepoints A
that contains exactly one point from each component of S2 \P (and choose it so {a, b} ⊂ A).
We can apply van Kampen’s theorem to U = S2 \ P1 and V = S2 \ P2 and X = U ∪ V =
S2 \ {p}, and use Lemma 1 to get that π1(X) contains Z as a retract5. This is clearly false
as X is homemorphic to R2.

Now we can prove the complement of an arc on S2 is connected. Assume not and let
the arc P separate a and b. Then by using the above lemma over and over again, we can
find a nested sequence of smaller and smaller arcs P1, P2, . . . each of which separates a and
b. The intersection of all of these arcs is a single point p ∈ P that can’t exist: take any path
from a to b that avoids p, by compactness it must avoid Pn for sufficiently large n, which is
a contradiction.
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