
Philip Tynan Problem set 1 Math 231a

1. Suppose that ι ∈ hom(X,X) satisfies ι ◦ f = f ◦ ι = f for all f ∈
hom(X,X). Then, setting f = idX , we have ι ◦ idX = idX ◦ι = idX .
But, as idX is the identity, we also have idX ◦ι = ι = ι◦ idX , so idX = ι,
as desired.

2. Let C be a category with one object, so C0 = {∗}.

(a) Suppose every morphism of C is invertible, and let G = homC(∗, ∗).

By the definition of a category, we know that G is associative, and that
G has an identity e = id∗ ∈ G. Furthermore, we are told that for each
f ∈ G, there is a g ∈ G such that f ◦ g = g ◦ f = id∗ = e, so every
element of G has an inverse. Therefore, G is a group.

(b) As above, we know that homC(∗, ∗) is associative with respect to
the operation of composition, and that it contains an identity. This is
precisely the definition of a monoid.

3. For any group G, let BG be the category with one object, ∗, such that
homBG(∗, ∗) = G, and composition is that of the group G. Define a
functor Groups→ Categories such that G 7→ BG.

If G,G′ are two groups, homGroups(G,G
′) is simply the set of group ho-

momorphismsG→ G′. On the other hand, the set homCategories(BG,BG
′)

is the set of all functors BG → BG′, which is equal to the set of all
ways to map homBG(∗, ∗) to homBG′(∗, ∗) that send the identity to the
identity and preserve composition. But, those are exactly the condi-
tions for which that set map is a group homomorphism, so indeed we
have homGroups(G,G

′) ∼= homCategories(BG,BG
′), as desired.

4. For any R, let R-mod be the category of left R-modules. Consider the
assignment R 7→ R-mod, sending a ring to a category.
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This clearly defines a map Rings0 → Categories0, so we now con-
sider what happens to the morphisms. If R,R′ are rings and f ∈
homRings(R,R

′), then f gives us a way to regard R′ as an R-module by
rr′ = f(r)r′. Thus, we can define M ′ = R′ ⊗RM , which has a natural
R′-action and is therefore an R′-module. We will abuse notation a bit
here and write M ′ = R′ ⊗f M , to remind us of the effect of the par-
ticular homomorphism f we chose. Thus, the map homRings(R,R

′) →
homCategories(R-mod, R′-mod) is given by f 7→ (M 7→ R′ ⊗f M).

It is clear that this maps the identity to the identity. However, we see
here that it is not strictly a functor, because considering the composi-

tion R
f−→ R′

f ′−→ R′′, we have R′′⊗f ′ (R′⊗f M) ∼= R′′⊗f ′◦f M , however
these are not the same module. To address this, we must instead just
consider everything up to isomorphism, but note that the problem is
technically not correct as stated for this reason.

It then remains to show that M 7→ R′ ⊗f M actually defines a func-
tor (up to isomorphism) from R-mod to R′-mod. It is clear that
it is a well-defined assignment on the level of objects, so consider
φ ∈ homR−mod(M,N) where M,N are R-modules. The induced map
on the R′-modules φ′ is given by r′⊗m 7→ r′⊗φ(m) ∈ R′⊗fN , given us
a bonafide homomorphism of R′-modules. It is clear that this will map
the identity to the identity, and will also be well-behaved with respect to
composition. Therefore, f indeed defines a functor R-mod→ R′-mod,
so our assignment R 7→ R-mod indeed gives us a functor.

5. Let Z/2Z be the Z-module with 2 elements, considered as a chain com-
plex concentrated in degree 0.

(a) Let A• be the complex given by A1 = A0 = Z, Ai = 0 if i 6= 0, 1,
where the map d1 : A1 → A0 is given by multiplication by 2. Con-
sider the chain map A• → Z/2Z given by 1 7→ 1 in degree 0 (we
must have the zero map in all other degrees). Then, for i 6= 0, we
have Hi(A•) ∼= 0 ∼= Hi(Z/2Z), and Hi(A•) ∼= Z/2Z, with the gener-
ator being sent to the generator, giving us an isomorphism in homology.

2



Philip Tynan Problem set 1 Math 231a

(b) Let A• be the complex given by A1 = B0 = Z, Ai = 0 if i 6= 0, 1,
where the map d1 : A1 → A0 is given by multiplication by n. Consider
the chain map A• → Z/nZ given by 1 7→ 1 in degree 0 (and all other
maps are again constrained to be the zero map). Then, for i 6= 0, we
have Hi(A•) ∼= 0 ∼= Hi(Z/nZ), and Hi(A•) ∼= Z/nZ, with the gener-
ator being sent to the generator, giving us an isomorphism in homology.

(c) The only map Z/nZ→ Z is the zero map, and as A0 is going to be
a direct sum of copies of Z, this means that the map Z/nZ→ A0 must
be the zero map. This is already enough to tell us that this will fail
in this direction, as the induced map in H0 is going to be Z/nZ → 0,
which is not an isomorphism.

6. For a chain complex A• = (· · · → A1
d−→ A0 → A−1 → · · · ), and an

abelian group B, let homi(A•, B) = homAb(Ai, B).

Consider the sequence hom•(A•, B) = (· · · → homi(A•, B)→ homi+1(A•, B)→
· · · ) with differential δ(f) = f ◦ d.

Suppose that f ∈ homn(A,B). Then, δ2(f) = δ(δ(f)) = (δ(f)) ◦ d =
(f ◦d)◦d = f ◦d2 = f ◦0 = 0, so hom•(A•, B) is indeed a chain complex.

7. Let A• be as in 5(b), and let B = Z /mZ. Here, we will make the
choice of cohomological grading for the duals.

(a) We have hom0(A,B) hom1(A,B) = hom(Z,Z /mZ) = Z /mZ, and
homi(A,B) = 0 for all i 6= 0, 1. In particular, this means that if i < 0,
we have that the H i’s are zero as well.

(b) Because A• is zero in degree 2 and higher, hom•(A,B) is as well,
and therefore so are the H i’s.

(c) δ : hom0(A,B) → hom1(A,B) is given by multiplication by n,
so H0 = ker δ, which is equal to the set of all elements of Z /mZ
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annihilated by n. This is a subgroup that is isomorphic to Z /g Z,
where g = gcd(m,n), so H0(hom•(A,B)) = Z /g/ZZ.

We also know that ker(δ : hom1(A,B)→ /hom2(A,B)) = hom1(A,B) =
Z /mZ, and im(δ : hom0(A,B) → hom1(A,B)) = nZ /m/ZZ =
g Z /mZ. Therefore, we have that H1 ∼= Z /g Z as well.

8. We have a clearly defined set of objects and morphisms between them.
Since homCop(X,X) = homC(X,X), by definition, idX is the same in
this category, and functions in exactly the same way, so idX ◦f =
f ◦ idX = f for any f ∈ homC(X,X).

Suppose now that f ∈ homCop(W,X), g ∈ homCop(X, Y ), h ∈ homCop(Y, Z).
Letting f ∗, g∗, h∗ be the corresponding morphisms in the original cate-
gory, we have f ◦ (g ◦ h) = (h∗ ◦ g∗) ◦ f ∗ = h∗ ◦ (g∗ ◦ f ∗) = (f ◦ g) ◦ h,
by the associativity of morphisms in C, along with the definition of
composition in Cop.

Thus, we can conclude that Cop is a category.

9. Consider the assignment (Cop)0 → Sets given by X 7→ homC(X, Y ) =
homCop(Y,X). Letting D = Cop, we have an assignment D → Sets
given by X 7→ homD(Y,X). If X0, X1 ∈ D0, and f ∈ homD(X0, X1),
then f is taken to the map φf : homD(Y,X0)→ homD(Y,X1) given by
post-composition with f (φf (g) = f ◦ g, for g ∈ homD(Y,X0)). Setting
f = idX we have φidX )(g) = idX ◦g = g, so φidX = idhomD(Y,X). There-
fore, it takes identities to identities.

Suppose that we also have f ′ ∈ homD(X1, X2). Then, if h ∈ homD(Y,X0),
we have φf ′◦f (h) = (f ′◦f)◦h = f ′◦(f ◦h) = φf ′(φf (h)) = (φf ′ ◦φf )◦h,
so associativity holds as well. Therefore, this assignment is indeed a
functor.

10. Let C be the category with one object, and a single morphism (which
must be the identity, as noted).
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If we choose an object D ∈ D0, we can consider the assignment ∗ 7→ D.
As long as we map the identity on ∗ to the identity on D, this specifies
a functor. Because this is a requirement for a functor, we get exactly
one functor from each such assignment.

11. Let F and G be two functors from C to D, where C is the cate-
gory from the previous problem. It is clear that specifying a natural
transformation η : F → G gives us a morphism in D as we specify
η∗ : F (∗)→ G(∗).

On the other hand, F,G are both completely determined by the images
F (∗), G(∗). To specify a natural transformation, we need only specify
the map η∗ : F (∗) → G(∗) corresponding to the single object ∗ ∈ C.
Because F,G are functors, we must have F (f) = idF (∗), G(f) = idG(∗),
so the diagram automatically commutes, and so we get a natural trans-
formation from any morphism in D.

12. Let C be the category with two objects, X0 andX1, such that homC(X0, X1)
has a single element called f , homC(X1, X0) is empty, and homC(X0, X0)
and homC(X1, X1) have a single element (the identity).

Fix two functors F,G : C → D.

The only nontrivial condition to check for η : F → G to be a natural
transformation is that arising from f . This is the commutative square

F (X0)
F (f)−−→ F (X1)

↓ ↓
G(X0)

G(f)−−→ G(X1)

.

Likewise, any commutative square in D for which two of the morphisms
are specified by F and G can be written in this manner, and therefore
determines a natural transformation F → G.

13. Let C be the category of commutative rings (because I am dyslexic)
and D the category of groups. Let F : C → D assign to each ring its
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group of units, and let G : C → D assign to each ring R the group
SLn(R).

(a) Let f ∈ homC(R,R
′). Then, F (f) is the restriction of f to the set

of units of R. On the other hand, G(f) is maps n × n matrices with
entries in R to n × n matrices with entries in R′, and in particular,
maps invertible matrices with entries in R to invertible matrices with
entries in R′.

(b) Define ηR : G→ F by the determinant. Then, for any rings R,R′,

and a morphism f : R→ R′, we have the diagram
G(R)

ηR−→ F (R)
↓ ↓

G(R′)
ηR′−−→ F (R′)

Let A ∈ G(R) = GLn(R). Then, F (f)(det(A)) = f(detA), as detA is
a unit of R, and is therefore in R. On the other hand, det(G(f)(A)) =
det(f(A)) = f(detA), by the multiplicative nature of ring homomor-
phisms. Thus, we see that the diagram commutes, and therefore η is a
natural transformation.

14. Fix two categories C,D, and define a new category Fun(C,D) whose
objects are functors from C to D, and whose morphisms are the nat-
ural transformations between them, with composition defined in the
natural way.

(a) Suppose that η : F → G,ω : G → H are natural transformations,
and consider ω ◦ η. If we draw the diagram for this for any two objects
X, Y ∈ C and any morphism f ∈ homC(X, Y ), then by the definition
of ω ◦ η, we can factor it into the diagrams for ω and η, both of which
commute. Therefore, the total diagram commutes as well, so ω ◦ η is
indeed a natural transformation.

(b) The identity morphism idF is the natural transformation η for which
ηX = idF (X) for each object X ∈ C0.
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15. Using the idea from (9), the functor C → Fun(Cop, Sets) is given by
sending each X ∈ C0 to homC(−, X) = homCop(X,−).

This clearly gives a well-defined map on classes that is covariant on
morphisms. We see that idX maps to the natural transformation η for
which ηY = idF (Y ) = idhom(Y,X) for each Y ∈ C. From the previous
exercise, we see that natural transformations compose in the correct
way as well, so this assignment behaves correctly on morphisms. From
this, we conclude that it is indeed a functor.
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