
Homework 4: Mayer-Vietoris Sequence and CW complexes

Due date: Friday, October 4th.

0. Goals and Prerequisites

The goal of this homework assignment is to begin using the Mayer-Vietoris sequence and cellular
homology to compute homology of basic shapes. Some proofs depend on algebraic manipulations,
while others depend on geometric arguments. So this is a good first run at trying to do problems
that are genuinely problems of algebraic topology. You may find many of these problems difficult,
as some will require some geometric creativity. Don’t be discouraged, in particular, if the problems
about surfaces seem difficult. It takes some time and wisdom to develop the intuition for CW
structures.

You need to know what CW homology is, and how to use the Mayer-Vietoris sequence. This
can be found in the class notes.

1. Reduced homology

Recall that reduced homology H̃n(X) for a non-empty space X is defined to be

H̃n(X) ∼= Hn(X), H̃0(X) ∼= ker(�/ image(∂1))

where � is the map of abelian groups

C0(X) → Z,
�

aixi �→
�

ai.

If X is non-empty and x0 ∈ X is a basepoint, show

H̃0(X) ∼= H0(X,x0)

where the latter is relative homology.

2. Homology of wedges

Let X and Y be spaces, and choose a point x0 ∈ X, y0 ∈ Y in each space. The wedge sum of
the two spaces is defined to be the space

X ∨ Y := X

�

x0∼y0

Y ∼= (X
�

Y )/x0 ∼ y0.

This is the space obtained by gluing x0 to y0. For instance, if X and Y are both homeomorphic to
S
1, their wedge sum is a figure 8. Show that

�Hn(X ∨ Y ) ∼= �Hn(X)⊕ �Hn(Y )

for all n.
This is a sign that the wedge sum of pointed spaces is like disjoint union of unpointed spaces.
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3. Spheres

In this problem you will prove the hairy ball theorem. Recall that the degree of a map f : Sn →
S
n is defined as follows: Since f∗ is a group map on Hn(Sn) ∼= Z, there is a unique integer d such

that the map
f∗ : Hn(S

n) → Hn(S
n) is given by f∗(a) = d · a

for any a ∈ Hn(Sn). This d is called the degree of f .

(a) Using the Mayer-Vietoris sequence, and induction, compute all the homology groups of the
n-sphere. Your argument needs to be more complete than the sketch I gave in class.

(b) Do this also using cellular homology.

(c) Fix i ∈ {0, . . . , n}. Let fi : Rn+1 → Rn+1 be the continuous map given by sending

(x0, x1, . . . , xi, . . . xn) �→ (x0, x1, . . . ,−xi, . . . xn).

This is otherwise known as reflecting a point about the hyperplane xi = 0. Show that fi|Sn is a
map of degree -1. You can do this using, for instance, the functoriality of cellular homology, or
simplicial homology. You just need to find a convenient CW structure or simplicial structure.

(d) Define a map g : Sn → S
n by g : �x �→ −�x. Show g is a degree 1 map if n is odd, and otherwise

a degree -1 map. This g is called the antipodal map.

(e) Show that the antipodal map is not homotopic to the identity of Sn if n is even.

(f) Using multiplication by i on Cm, show that an odd-dimensional sphere S
2m−1 ⊂ Cm always

admits a nowhere-vanishing tangent vector field.

(g) Now prove this isn’t possible for an even-dimensional sphere. That is, prove (using degree,
for instance) that no even-dimensional sphere admits a tangent vector field that is nowhere
vanishing. (It has to vanish somewhere!) It may be hard to think of a solution, so feel free to
ask for a hint when you want it.

For n = 2, this is called the hairy ball theorem. For instance, it shows in physics that if
you have any Gaussian surface (which is a fancy term for “surface”) that is homeomorphic to
a sphere, the electric field cannot be everywhere tangent to the surface and non-zero. So if
you have, for instance, a metal sphere exposed to an electric field, there must be some point
on the sphere where an electron there will not experience any force (assuming the electron is
constrained to lie on the surface of the sphere).

Another common analogy is that “you can’t comb a coconut” (because a totally flat comb-
job would yield a tangent, nowhere-zero vector field). Another common slogan is that at any
given point, somewhere on earth, the wind must not be blowing (if you disregard the components
of wind that blow directly toward the sky).
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4. Torsion homology

In this example we’ll see our first example of torsion homology groups. We will construct a
CW complex X with a single cell in dimensions 0, 1, and 2. (And no other cells). Note that X

0

and X
1 are uniquely determined, but there is ambiguity in X

2 depending on the attaching map
Φ : ∂D2 → X

1.
Recall that the degree of a continuous map f : Sn → S

n is defined as follows: f induces a map
Hn(Sn) → Hn(Sn) on top homology—i.e., a map Z → Z. But any group map Z → Z is determined
completely by the image of 1 ∈ Z, and the image, d ∈ Z, is called the degree of the continuous map
f . (This is the same definition as above.)

(a) Fix an integer d ∈ Z. Show that the map fd : eiθ �→ e
idθ is a degree d map from S

1 to itself.

(b) Let the map Φ be given by fd, and X the resulting CW complex. Compute the homology
groups of X. (This depends on d.)

(c) (*) Show that X is not a manifold for d �= 2. (For d = 1, it is not a manifold, but a manifold
with boundary.)

5. Cylinders, Cones and Suspensions

Fix a non-empty, topological space X.

(a) Compute the homology of the cylinder (i.e., the product space) X × [0, 1], given the homology
of X.

(b) Let CX be the space X × [0, 1]/ ∼, where ∼ is the equivalence relation (x, 0) ∼ (x�
, 0) for all

x, x
� ∈ X. (This means the subspace X × {0} is collapsed to a single point.) This space is

called the cone on X. Show that CX is contractible.

Let SX be the space CX/ ∼, where ∼ is the equivalence relation (x, 1) ∼ (x�
, 1) for all

x, x
� ∈ X. (This means the subspace X × {1} is collapsed to a single point.) This space is

called the suspension of X. Put another way it is obtained from X × [0, 1] by collapsing each
copy of X at the endpoints of [0, 1] to a point (one point for each copy).

(c) If X is the n-sphere, show that SX is homeomorphic to the (n+ 1)-sphere.

(d) Now X can be any space. Compute the homology of SX in terms of the homology of X.

(e) For each n ∈ Z≥0, fix an abelian group Kn. Show that there exists a space X such that

H̃n(X) ∼= Kn
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for all n.

6. Homology of the n-torus

The n-torus is the space T
n = S

1 × . . . × S
1; i.e., the n-fold product of a circle. So T

1 is just
a circle, and T

2 is the surface of a doughnut. We’ll see how to compute the homology of product
spaces easily using the Kunneth formula later on, but for now we’ll compute it using Mayer-Vietoris.

(a) Find an open cover of S1 by two intervals, I1 and I2, such that the intersection I1 ∩ I2 is equal
to the disjoint union J1

�
J2 of two smaller intervals.

(b) Use the Mayer-Vietoris sequence for the open cover U = I1 × T
n−1, V = I2 × T

n−1, and
U ∩ V = (J1 � J2)× T

n−1. By induction on n, conclude that

Hk(T
n) = Z(

n
k)

where
�n
k

�
is the binomial coefficient “n choose k”. In other words, if you look at the rank of the

kth homology group of the n-torus, you will see the kth coefficients on the nth row of Pascal’s
triangle.

7. Homology of surfaces using CW structure

Fix a number g ≥ 0. and let X1 be the wedge sum of 2g circles all connected at some basepoint
x0 ∈ X

1. We label the circles by a1, b1, . . . , ag, bg. (So for instance, if g = 2, there are four circles,
with names a1, b1, a2, b2.)

Note that X
1 is a CW complex with a single 0-cell, and 2g 1-cells. By abuse of notation, we

also let
ai : [0, 1] → X

1
, bi : [0, 1] → X

1
, ai(0) = ai(1) = bi(0) = bi(1) = x0

denote the composite maps

D
1 → (

�

α

D
1
α

�
X

0) → X
1

defining the 1-cell labeled by ai and bi. Here, the first map is just including the 1-disk to the cell D1
α

corresponding to the loop ai, and the second map is the quotient map that defines the 1-skeleton
of X1.

Informally, ai “is” the map defining the loop ai, and likewise for bi. Note that these generate
the homology group H1(X1) ∼= Z2g. Finally, by the symbol a−1

i , we mean the path going the other
direction: It is the map

a
−1
i : [0, 1] → X

1
, a

−1
i (t) := ai(1− t), t ∈ [0, 1].

And likewise,
b
−1
i (t) := bi(1− t).

For instance, one can show that the 1-simplex a
−1
i is the additive inverse of ai in H1, and likewise

for bi.
Fix a disk D

2, and think of its boundary ∂D
2 ∼= S

1 as an interval I = [0, 4g] (so it has length
4g), modulo the endpoints. Then there’s a map

Φ : S1 → X
1
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given as follows: For any integer n = 0, . . . , 4g − 1, write n = 4j + l where j is an integer and l is
an integer between 0 and 3, inclusive. Then we define

Φ(n+ t) =






aj(t) if l = 0

bj(t) if l = 1

a
−1
j (t) if l = 2

b
−1
j (t) if l = 3

, where t ∈ [0, 1] and n+ t ∈ [0, 4g].

In other terms, we say that the map S
1 → X

1 is given by the path b
−1
g a

−1
bgag . . . b

−1
1 a

−1
1 b1a1. One

way to think of this is to think of ∂S1 as a 4g-gon, and to label the sides of the 4g-gon by the
symbols ai, bi and their inverses.

See for instance, the images on Page 5 of Hatcher, on the page before Example 0.1.
Let X = X

2 be the CW given by gluing D
2 onto X

1 by Φ.

(a) Draw a picture for g = 1 and g = 2 showing how X is the surface of genus g.

(b) Compute the homology groups of X using cellular homology.

8. Homology of the punctured torus

Think of the torus T 2 as the quotient space obtained by taking I
2 = [0, 1]× [0, 1] and modding

out by the relation

(t, 0) ∼ (t, 1) and (0, t) ∼ (1, t) for any t ∈ [0, 1].

Note this is actually the same description that was given for the torus above, where we called it
the surface of genus 1.

Fix a point x of T 2—for instance, the point (1/2, 1/2) in the interior of I2.

(a) Consider the (no longer compact) space T
2 − {x} obtained by puncturing the torus; i.e., by

removing the point. Show it is homotopy equivalent to the wedge sum of two circles. A proof
by picture will be accepted only if the picture is very-well drawn and convincing. State the
homology of the punctured torus; explain your answer.

(b) Consider the shape X obtained by deleting a small open disk around x; this is called the surface
of genus 1 with one boundary circle. (The boundary circle is the boundary of the open disk you
deleted.) Show that this (compact) space is homotopy equivalent to the (non-compact) space
from Part (a). Again, a picture can suffice so long as it is carefully drawn.

(c) Show that the inclusion i : S1 → X of the boundary circle is an isomorphism on H0, but is
the zero map on H1. No picture will be accepted as a full answer, but you can draw one for
intuition.

(d) Draw a picture X embedded in R3. Draw a set of curves that generate H1(X).
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9. Homology of the n-punctured torus

(a) Let X be the space obtained by putting two punctures into T
2. Show that H1(X) is isomorphic

to Z3.

(b) Draw three curves that generate H1.

(c) If you haven’t already, prove that the twice-punctured torus is homotopy equivalent to a bouquet
of 3 circles. This is a fancy term for a wedge sum of 3 circles.

(d) More generally, prove that the n-punctured torus is homotopy equivalent to a bouquet of (n+1)
circles.

(e) Show that a wedge of n circles is not a manifold. Explain (in one sentence) why this shows
that “being a manifold” is not preserved under homotopy equivalence.

(f) Draw an n-punctured torus and draw the n+ 1 generators of H1.

10. Homology of surfaces using Mayer-Vietoris

The sphere is a surface of genus 0. The torus is a surface of genus 1. Attaching more handles,
one gets a surface of genus g. (For instance, the surface of a pretzel is a surface of genus 3.) If we
remove n small open disks from a surface of genus g, we obtain a surface of the same genus, but
with n boundary circles. Let Σg,n denote the surface of genus g with n boundary circles. (Note
this is homotopy equivalent to simply removing n points from Σg.)

(a) Compute the homology groups of Σg,0 for g ≥ 0 by Mayer-Vietoris and the previous exercise,
or otherwise.

(b) Compute the homology groups of Σg,n.


