Homework 5: Cellular Approximation

Due date: Friday, October 11th.

0. Background and Goals

0.1. Notation and definitions. Let X be a CW complex. In class we have denoted by A,
the set of n-cells in X. From now on, we will use the notation A, to denote the set of
n~-cells. This is to distinguish it from a subspace A C X. If there are a few CW complexes floating
around, we’ll write AX to mean the set of n-cells of a CW complex X, and A7 to mean the set of
n-cells of a CW complex A, for instance.

DEFINITION 1. A subspace A C X is a sub CW complex if A is closed and is a union of cells
in X. A choice of (X, A) is called a CW pair.

In other words, any sub CW complex A determines some subset A% C AX for each n, and can
be written as the space
A= U @ (D7)
a€AA n>0
Here, ¢ is the quotient map

g: ([ [Tx" = x™.
Note in particular A is a CW complex; we denote its n-skeleton by A™.

ExXAMPLE 0.1. (1) If A =0 then (X, A) is a CW pair for any CW complex X.

(2) If A= x € XY is a point in the O-skeleton of X, then (X, A) is a CW pair.

(3) Recall that CP™ is built out of a single cell in each even dimension. The pair (CP", CP*)
is a CW pair for k < n.

(4) We can give any polyhedron a CW structure—a 0-cell for every vertex, a 1-cell for every
edge, and a 2-cell for every face. (Regardless of whether the face is a square, a triangle,
or whatever.) Then if A is the closure of a face (or a union of such closures) or a choice
of edges (including the boundaries of the edges) or just a collection of vertices of the
polyhedron, or a union of any of these options, then (X, A) is a CW pair.

Note that not every choice of A2 C AX makes sense as a subspace (or a space at alll), since
the higher cells we choose must glue onto A" 1.

DEFINITION 2. Let o € A,,. Then by e, we mean the open n-cell of X corresponding to a.

Concretely, we have the map
pr— ([ po[x""—x"
acA,
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18 HOMEWORK 5: CELLULAR APPROXIMATION

where the first map is including D! into the disjoint union, and the second map is collapsing via the
gluing maps ®”. Then e? is the image of interior(D?) under this composition. It is homeomorphic
to the open n-disk.

DEFINITION 3. Let (X, A) and (Y, B) be CW pairs. A map of pairs f : (X,A) — (Y, B) is
called cellular if
f(A") c B™ and f(Xm)cyn
for each n. In particular, if A = B = 0, a continuous map f : X — Y is called cellular if
f(X™) C f(Y™) for all n.

In this homework you will prove a fundamental result for modern topology: Cellular approxi-
mation.

THEOREM 0.2 (Cellular approximation theorem). Let (X, A) and (Y, B) be CW pairs. If
f:(X,A) — (Y, B) is a continuous map of pairs, then f is homotopic to a cellular map of pairs.
That is, the homotopy can be chosen so that f; is a map of pairs for each t, and f; is a cellular
map.

For instance, if Y is a space that can be given a CW structure with no cells in dimensions
1 <k < N, then any map from a k-dimensional connected X, with 1 < & < N, must be null-
homotopic (i.e., homotopic to a constant map). This follows by taking A = B = ) and observing
that a cellular map must take X = X* to some vertex of Y.

1. Homotopy Extension Property

The strategy for constructing the homotopy f; will be to build it step by step on each n-skeleton.
That is, we’ll first construct cellular maps on X™. Then we’ll have to extend a homotopy defined
only on X™ to a homotopy defined on all of X! This turns out to be not too difficult, and we prove
it here.

DEFINITION 4 (Homotopy Extension Property). We say that a pair of spaces (X, A) satisfies
the homotopy extension property, or satisfies HEP, if for any map f : (X,A) — Y, and any
homotopy

FAAXx[0,1] =Y such that F4(a,0) = f(a)
there exists a homotopy
F:Xx[0,1]>Y
such that
F(x,0) = f(x) and F(a,t) = F*(a,t) Ya € A.

Diagrammatically, this means the dashed arrow exists:
Maps({0},Y) <——— X

T —
~
—
—
=z A

Maps([0,1],Y) ~———— A
Here, we write F'4 because amap Ax[0,1] — Y is the same thing as a map from A to Maps([0,1],Y").
As intuition, this means that if you fix a map from X — Y| and then you wiggle what the map
does on A, then you can find a wiggle on all of X extending the wiggle on A.
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Assume (X, A) has the homotopy extension property. Show that the space
X x [0,1]
retracts onto the subspace
Ax [0, 1] X x {o}.

(Hint: Take Y to be this subspace, and f to be the map embedding f(x) = (z,0). Also, take
F4 to be the embedding of A x [0,1] into Y.)

Conversely, suppose that X x [0, 1] retracts onto the subspace from above. Show that (X, A)
has HEP.

2. Extending wiggles of X"~ ! to wiggles of X"

Consider the space D™ x [0,1] C R**! and the subspace
aD™ x [0,1]_J D™ x {0}.

Show that D™ x [0,1] deformation retracts onto this subspace.

(Hint: Consider the disk as sitting on the plane of height 0 inside R” x R. Consider point
p=(0,2) € D™ x R C R" x R, which sits above the origin of the disk at height 2. If it looks
down, it can see (the top of) D™ x [0,1] C R™ x R sitting below it. What do you get if you
start drawing rays from p to points in D" x [0,1]?)

Let F* be your deformation retraction from (a). For each n = 0, 1,2, draw the image of F}* for
t=0,t =1/2, and t = 1. (Note that if n = 0, then dD™ = (.)

Does the pair (D™, dD™) have the homotopy extension property? (Hint: Problem 1.)

In (a), you constructed a map F™ : [0,1]; x (D™ x [0,1]) — D™ x [0, 1] exhibiting a deformation
retraction. The subscript ¢ is to simply remind you that [0,1]; parametrizes the homotopy.
(Unlike our usual notation, I'm putting the time parameter to the left; this is to make sure we
don’t confuse it with the parameter for the unit interval in D™ x [0,1].)

Let o € AX. Show that

(Po X idpq)) 0 F"(t, D 2, s) = € el

(z,5) otherwise

F™%(t,x,s) = {
exhibits a deformation retract of X™ x [0, 1] onto the space

(X" —en) x [0,1][ X" x {0}.
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(e) Draw this retraction for n = 2 if X is the unit 2-disk with a single cell in dimensions 0,1, and 2.
(For instance, X! is just a circle, and X2 = X is obtained by attaching the disk in the obvious
way.) Draw the deformation retraction from part (d) for times t =0,1/2, 1.

(f) Does the pair (X™, X™ — e?) have the homotopy extension property? (Hint: Problem 1.)

(g) Show that the pair (X", X"~ 1) has HEP.
(Hint: Note that the space

x"—(J e
acAX

is by definition equal to the space X"~! C X™. So can you write a piecewise formula for
“Perform F™* simultaneously for all o € AX”? It only needs a minor modification of (1).)
You've proven that if we wiggle a homotopy on X"~ !, we can wiggle it on all of X", too.

3. Extending wiggles of A to wiggles of X.

Now, given a CW pair (X, A), our goal is to show that (X, A) has HEP. By Problem One, this
means we’ll exhibit a retraction from X x [0, 1] to the space

X x {0} JA x[0,1].
We do this one dimension at a time. So given n > 0, define a function

[0,1]y x X™ x [0,1] = X™ x [0,1]

as follows:
(z,s) D, G E<n-—1
(t,x,s) = < (x,58) T € en, a€ Al
Fre(t,z,s) x€el, adg Al a € AX.

The interpretation is: “If x is in a lower dimension, don’t move it. If it’s a point in A, don’t move
it. If it’s a point in dimension n, and it ain’t in A, wiggle the point (x, s) so it falls into A x [0, 1]
or into X™ x {0}.”

(a) For n > 1, show that this exhibits a deformation retraction from X™ x [0, 1] to

Xm0, A" x [0, 1] x™ x {0}

(b) For n > 1, does the pair (X", A" U X"~ 1) satisfy HEP?
(¢) What happens when you apply the same formula as above when n = 0?

(d) Does the pair (X°, A%) satisfy HEP?
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Believe it or not, the following definitions are for notational convenience. Choose some re-
parametrization of the time interval [0, 1]; by an interval 577, 5]. That is, a homeomorphism

1 1 1 1
Pn [Wa 27] =0, 1] an(ﬁ) =0, ¢n(27

Then for each n, we define a map

)=1.

”:[ﬁ,%]txX"x[O,l]aX"x[O,l]
as follows:
(z,5) D, G k<n-1
(t,x,s) = < (x,8) x € ey, ae Al

F™(¢n(t),z,s) x € e, a g AL, ae AX.

The interpretation of r™ is: “Do the deformation retraction from part (a), but really quickly,
during the time interval [577, 5].” The reason we're doing this is because X and A may
be infinite-dimensional, so it would take forever to retract X x [0, 1] if we did our previous
retractions one unit interval at a time. This reparametrization will allow us to perform the
infinite number of retractions 7™ in a finite amount of time.
Now define a map
r:[0,1]; x X x [0,1] = X x [0,1]

by the formula

(z,s) z€ X" te(0, 5]
rn(t, x, ) re X" te [2nl+1 , %]
(h2.5) > Tn—1(t,rn(5=,2,5)) z€ X" rp(5,2,5) € X — At €[5+, 57
Tt o1 (5 - > Tt (5t o505 @, 8))) . .) - @ € X™, 1 (g, 2, 8) € X — A,
t € 5, 3%, kE<n.
(a,s) aec Atel0,1]

The first line means: If you're in the n-skeleton, don’t move until your time comes. You
let the kids in the higher-dimensional cells move first.

The second line tells you when your time has come: If ¢ is bigger than Qn%, your time has
come. So get moving, and retract just as r, tells you to do.

The third line is actually redundant in light of the fourth line, but I wrote it in to make
things easier to parse. It says that if you're in the n-skeleton, once your time comes, start
retracting according to 7,. Well, as t moves forward in time, and if you're still not in A,
you can’t rest! You must keep retracting. This third line says, move according to the next
retraction, called r,_1.

The fourth line is hard to parse, but it’s really just an iteration of the third line as t keeps
moving forward. The fourth line means that if x begins in the n-skeleton, but ¢ is a time all
the way forward in time, then retract x into A x [0,1]|J X" ! using the retraction r,, then
if you're still not in A retract it further using the retraction r,_1, and so forth until you are
finally retracting via 7.

The last line means that if you're in A x [0,1], don’t move. (The third and fourth lines
don’t tell you what to do at a big time ¢ if you're in a higher cell of A. This is to cover for
that.)
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The interpretation is: “Okay, do all the deformation retractions in succession, really
quickly.”

Note that every point ¢ € [0, 1] is in the interval [0,
is defined for every point (¢, x, s) in the domain.

We'll verify that it’s continuous in the next problem. For now:

1

o] for some k small enough, so r(t, z, s)

(e) Show that r(0,z,s) = (z,s). This means rg is the identity map for X x [0, 1].

(f) Show that r(1,z,s) is contained in the space

Ax [0, 1] X x {o}.

(g) Show that r(t,a,s) = (a,s) for all (a,s) € A x [0,1]. Show that the above map is well-defined;
that is, that the last line does not conflict with the rest of the lines.
Pending the continuity of r, you've shown that X x [0,1] deformation retracts onto A x
[0,1]UX x {0}. By Problem 1, you've shown that any CW pair (X, A) satisfies HEP.

4. Continuity of r

xX=[Jx"

n>0

Recall that a CW complex

is topologized so that U C X is open if and only if U N X™ is open in X" for all n > 0.

(a) You may assume () is a line interval. Show that a function
f: XxQ—->Y
is continuous if and only if the restriction
flxnxg : X" xQ =Y

is continuous for all n.
(b) Show that the function r from the previous problem is a continuous map.

5. Deforming maps into Y, I

(a) For n > 1, let g € interior(D™) be an interior point of the standard n-disk. Show that there
exists a deformation retract from D™ — {q} to 9D".

(b) Let AY be the set of n-cells of a CW complex Y. For all 8 € A, choose some gz € e C Y™
Show there exists a deformation retraction from Y™ — {gg} to Y"1
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In other words, if you poke a hole in every top-dimensional cell of Y, you can contract the
resulting space to the (n — 1)-skeleton.

(¢) Let Z be a space, and g : Z — Y™ a continuous map such that
for all B € AY, there is some qp € e for which gg is not in the image of g.

Show that ¢ is homotopic to a map whose image is contained in Y~ !, and that this homotopy
g+ can be chosen in such a way that if g(x) € Y"1, then g;(x) = g(z) for all times ¢.

6. Deforming maps into Y, II

In this problem, you may assume the following Lemma:

LEMMA 6.1. Let n < k. Then every continuous map from D™ to D* is homotopic to a map
relative to the boundary of D™ which is not a surjection. More generally, if Z is obtained by
attaching a k-cell to some space Z’, then any map f : D™ — Z can be homotoped to a map which
does not surject onto the k-cell.

This is obvious when n = 0. For n # 0, it turns out one can find maps D™ — D* which are
surjective. (Google for instance “space-filling curve”.) We’ll assume the Lemma for now.

Fixamap f: X — Y, where X and Y are CW complexes. Also fix a sub complex A C X, and
assume that f(A™) C Y for all n.

Consider the map
flxo: X% =Y.

Since Y = [J;5¢, each @ € X° has image f(z) € Y*= for some k, € Zso. (Note that if X°
is infinite, the k, may grow arbitrarily large.) Recall by definition of CW complex that every
connected component of Y must contain some element of Y°.

(a) Using Problem 5 repeatedly, exhibit a path «, : [0,1] — Y from f(x) to some y € Y°. If
f(x) € YO, obviously you can choose the constant path.

(b) Exhibit a homotopy from f|xo : X° = Y to a map ¢" : X* — Y such that g(X°) C Y°. Show
that you can choose this homotopy to be constant on A%, so G(a,t) = ¢°(a) = f(a) for all
ac A°.

(c) Show that there exists a homotopy from f : X — Y to some function f°: X — Y such that
fO(X%) c Y°. (Hint: Note that for any n, (X, X™) is a CW pair. What do Problems 3 and 4

tell you? And why did I have you make ¢g°?) Show that this can be chosen to be constant on
A.
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(d)
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Assume by induction that we have defined a map
X =Y

such that (i) f*~! is homotopic to f, (ii) f*~1(X"~1) C Y"1, and (iii) the homotopy from f
to f»~ ! is constant on A.
Recall that since D™ is compact, the composite map

Dy —-X—=Y

must meet only finitely many cells of Y. Hence for all a € AX, f"~1(e?) is contained in Y*=
for some ko € Z>o.

Show by repeated use of Problem 5 and the Lemma (on all a € A:X at once) that f"~1|x«
is homotopic to a map g™ : X™ — Y such that ¢g"(X™) C Y. Show that this can be chosen so
the homotopy is constant on A™.

Show there exists a map f* : X — Y, homotopic to f*~!, such that f*(X") C Y". (Hint:
HEP.) Show this can be chosen so that the homotopy from f™ to f*~! is constant on A.

Show that if X is a finite-dimensional CW complex (so X = X" for some finite n), then any
continuous map f : X — Y can be made cellular. Further show that if f is cellular on a
subcomplex A C X, then the homotopy can be chosen to be constant on A.

7. Deforming maps into Y, III

Now we take care of the case when X is not finite-dimensional, using the same trick as in

Problem 3. Let

1 1
Rn:[l—%,ﬁ]x){—)Y

be the homotopy from f"~! to f™, but accelerated. (For instance, by using a variant of the
parametrization ¢,, from before.) This means that

1
— o

1

R, (1 )= f""Yz)  and Rn(ﬁ,x):f”(x)

where by f~! we mean the original function f. Define a map

R:[0,]]x X =Y

combining all the homotopies R,, using techniques similar to Problem 3.

(1) Show that R(0,z) = f(x). This means R exhibits a homotopy from f (to some other
function).

(2) Show that if x € X™, then R(1,x) € Y.

(3) Show that R(t,a) = f(a) for all a € A.
Pending the continuity of r, you’ve exhibited a homotopy R from f to a cellular map.
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(4) Using techniques similar to Problem 4, show that R is a continuous function.

8. Cellular Approximation for Pairs

Show that any map of pairs (X, A) — (Y, B) is homotopic to a cellular map of pairs. (Hint:

Just do the non-pair case step by step, and use HEP!)

9. CW Structures on Products

Let X and Y be CW complexes. In this problem we will show that X x Y has a CW structure.

Show that for two disks of dimensions a, b, we have
d(D" x D*) = (9D*)x D* | J D*x(oD").
D x DY
The righthand side means we glue the two spaces
(0D*) x D*  and  D® x (dD")

along the common subset 9D% x 9D°.
It may be easiest to choose a homeomorphism D™ 2 .

We will put a CW structure on X x Y where the set of n-cells is given by
A [ A <A
a+b=n

where 0 <a<nand 0<b<n.
Recall that g, is the map

pr— (] po][x— x.

acAX
Let (o, B) € AX x AY. Show by induction that the maps
d, X gg, Go X P
define an attaching map for the disk

n
a,B:

You should use the previous part of the problem to choose a convenient description of aDZ’ 3

onto (X x V)L

Using the CW structure for S* consisting of one 0-cell and one 1-cell, how many k-cells are in
the product CW space (S1)" = S x ... S'? (Use the CW structure from the previous part of

this problem.) As a hint, think of Pascal’s triangle.
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10. CW Structures on Mapping Cones

I won’t give you as many hints for this one.
Let f: X — Y be a continuous map. Recall that the mapping cone of f is defined to be the
quotient space

My = (X x[0,1]J]Y)/ ~
where the equivalence relation we quotient by is
(z,1) ~ f(=).
Show that if X and Y are CW complexes, and f is a cellular map, then My is a CW complex.
Construct this CW structure in such a way that the pair (M, X x {0}) is a CW pair.



