Homework 7: Some basic computations

Notation and Remarks

This is a short homework meant to make sure we can all do some computations.

1. Degree and $\mathbb{R}P^n$

- (a) Let $f, g: S^n \to S^n$ be two continuous maps. Show that $\deg(g \circ f) = \deg g \times \deg f$.
- (b) Using cellular homology, and the CW structure we defined in class a few weeks ago, compute $H_*(\mathbb{R}P^n)$ for all n, including $n = \infty$. (Refer to a past homework for the degree of the antipodal map.)
- (c) Show that the quotient map $S^n \to \mathbb{R}P^n$ is a covering map with fiber equal to a discrete space with 2 points.
- (d) Compute $\pi_m(\mathbb{R}P^n)$ in terms of $\pi_m S^n$ for all $m \geq 2$. Also compute $\pi_1(\mathbb{R}P^n)$.

2. Homology is not a complete invariant

Exhibit two spaces with isomorphic homology groups that are not homotopy equivalent.

3. Relative homology is not always the reduced homology of the quotient

Let X = [0, 1] and let

$$A = \{0\} \cup \{1/n\}_{n \in \mathbb{Z}_{>1}}.$$

- (a) Show that $H_1(X, A)$ is isomorphic to to a direct $sum \oplus_{n \in \mathbb{Z}_{>0}} \mathbb{Z}$ of countably many copies of \mathbb{Z} .
- (b) Show that the direct sum of countably many copies of \mathbb{Z} is countable (as a set).
- (c) Exhibit a surjection from $\tilde{H}_1(X/A)$ to the direct *product* $\prod_{n \in \mathbb{Z}_{\geq 0}} \mathbb{Z}$ of countably many copies of \mathbb{Z} . (Recall that the distinction between direct product and direct sum is that the sum can have only finitely many non-zero factors.)

- (d) Show that the direct product of countably many copies of \mathbb{Z} is uncountable as a set.
- (e) State why $\tilde{H}_1(X/A)$ and $H_1(X, A)$ cannot be isomorphic groups.
- (f) But we know that under many circumstances, we have an isomorphism $H_{\bullet}(X, A) \cong \tilde{H}_{\bullet}(X/A)$. What hypotheses are not met in this problem?

4. Homotopy groups of products

Let (X, x_0) and (Y, y_0) be pointed spaces. Show that there is an isomorphism

$$\pi_n(X \times Y, (x_0, y_0)) \cong \pi_n(X, x_0) \times \pi_n(Y, y_0)$$

for all $n \ge 0$. More generally, let $\{(X_{\alpha}, x_{\alpha})\}_{\alpha \in \mathcal{A}}$ be a collection of pointed space. \mathcal{A} may be a ridiculous indexing set (uncountable, even). Show

$$\pi_n(\prod_{\alpha} X_{\alpha}, (x_{\alpha})) \cong \prod_{\alpha} \pi_n(X_{\alpha}, x_{\alpha}).$$

5. Excision applied to smash products

Show that if (X, x_0) is *m*-connected and (Y, y_0) is *n*-connected, then $X \wedge Y$ is (m + n + 1)-connected.

6. The Klein Bottle

- (a) Find the universal cover of the Klein bottle.
- (b) Compute π_m of the Klein bottle for all $m \ge 1$.