## Homework 7: Some basic computations

## Notation and Remarks

This is a short homework meant to make sure we can all do some computations.

1. Degree and $\mathbb{R} P^{n}$
(a) Let $f, g: S^{n} \rightarrow S^{n}$ be two continuous maps. Show that $\operatorname{deg}(g \circ f)=\operatorname{deg} g \times \operatorname{deg} f$.
(b) Using cellular homology, and the CW structure we defined in class a few weeks ago, compute $H_{*}\left(\mathbb{R} P^{n}\right)$ for all $n$, including $n=\infty$. (Refer to a past homework for the degree of the antipodal map.)
(c) Show that the quotient map $S^{n} \rightarrow \mathbb{R} P^{n}$ is a covering map with fiber equal to a discrete space with 2 points.
(d) Compute $\pi_{m}\left(\mathbb{R} P^{n}\right)$ in terms of $\pi_{m} S^{n}$ for all $m \geq 2$. Also compute $\pi_{1}\left(\mathbb{R} P^{n}\right)$.

## 2. Homology is not a complete invariant

Exhibit two spaces with isomorphic homology groups that are not homotopy equivalent.
3. Relative homology is not always the reduced homology of the quotient Let $X=[0,1]$ and let

$$
A=\{0\} \cup\{1 / n\}_{n \in \mathbb{Z}_{\geq 1}}
$$

(a) Show that $H_{1}(X, A)$ is isomorphic to to a direct sum $\oplus_{n \in \mathbb{Z} \geq 0} \mathbb{Z}$ of countably many copies of $\mathbb{Z}$.
(b) Show that the direct sum of countably many copies of $\mathbb{Z}$ is countable (as a set).
(c) Exhibit a surjection from $\tilde{H}_{1}(X / A)$ to the direct product $\prod_{n \in \mathbb{Z}_{\geq 0}} \mathbb{Z}$ of countably many copies of $\mathbb{Z}$. (Recall that the distinction between direct product and direct sum is that the sum can have only finitely many non-zero factors.)
(d) Show that the direct product of countably many copies of $\mathbb{Z}$ is uncountable as a set.
(e) State why $\tilde{H}_{1}(X / A)$ and $H_{1}(X, A)$ cannot be isomorphic groups.
(f) But we know that under many circumstances, we have an isomorphism $H_{\bullet}(X, A) \cong \tilde{H}_{\bullet}(X / A)$. What hypotheses are not met in this problem?

## 4. Homotopy groups of products

Let ( $X, x_{0}$ ) and $\left(Y, y_{0}\right)$ be pointed spaces. Show that there is an isomorphism

$$
\pi_{n}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \cong \pi_{n}\left(X, x_{0}\right) \times \pi_{n}\left(Y, y_{0}\right)
$$

for all $n \geq 0$. More generally, let $\left\{\left(X_{\alpha}, x_{\alpha}\right)\right\}_{\alpha \in \mathcal{A}}$ be a collection of pointed space. $\mathcal{A}$ may be a ridiculous indexing set (uncountable, even). Show

$$
\pi_{n}\left(\prod_{\alpha} X_{\alpha},\left(x_{\alpha}\right)\right) \cong \prod_{\alpha} \pi_{n}\left(X_{\alpha}, x_{\alpha}\right) .
$$

## 5. Excision applied to smash products

Show that if $\left(X, x_{0}\right)$ is $m$-connected and $\left(Y, y_{0}\right)$ is $n$-connected, then $X \wedge Y$ is $(m+n+1)$ connected.

## 6. The Klein Bottle

(a) Find the universal cover of the Klein bottle.
(b) Compute $\pi_{m}$ of the Klein bottle for all $m \geq 1$.

