
Homework 8

Due date: Friday, November 1.

0. Notation and Remarks

Pointed maps. Given any two pointed spaces X = (X,x0) and Y = (Y, y0) let

Maps∗(X,Y )

denote the set of pointed, continuous maps. These are maps f : X → Y such that f(x0) = y0.
Note that this mapping space is pointed—the constant map is the basepoint. We denote by

[X,Y ] = Maps∗(X,Y )/ ∼
the set of homotopy classes of maps.

Mapping Spaces. Let X and Y be topological spaces. Recall that Maps(X,Y ) is the space
of continuous maps from X to Y , obtained by turning the compact-open topology into a compactly
closed topology.

1. Topology of mapping spaces

(a) Let X and Y be compactly generated spaces. Prove that Maps(X,Y ) is compactly generated.
Can you weaken the assumptions on X and Y ?

(b) Let X and Y be compactly generated spaces. Prove that two maps f0, f1 : X → Y are
homotopic if and only if there is a continuous map

[0, 1]→ Maps(X,Y )

such that 0 7→ f0 and 1 7→ f1.

It is a theorem of Milnor that Maps(X,Y ) is homotopy equivalent to a CW complex if X and
Y are CW complexes.

2. Cofibrations

A continuous map i : A → X is called a cofibration if for any space Z, the following dotted
arrow exists, given that the rest of the diagram commutes:

Maps({0}, Z) Xoo

vv
Maps([0, 1], Z)

OO

A
FA
oo

OO

1



2 HOMEWORK 8

This means that any homotopy of A extends to a homotopy on all of X.

(a) Let f : X → Y be any continuous map. Show that

X →Mf , x 7→ (x, 0)

is a cofibration. Recall that Mf is the mapping cylinder, defined to be

(X × [0, 1]
∐

Y )/(x, 1) ∼ f(x).

(As a hint: Try using the technique from a previous homework, which shows that a certain
subspace is a (not necessary deformation) retract of a product space).

(b) Show that any continuous map f : X → Y factors as a cofibration, followed by a homotopy
equivalence:

X ↪→M ' Y

(c) State in one sentence, using previous homework, why the continuous map Xk → X of including
the k-skeleton into a CW complex is a cofibration.

(d) Let f : X → Y be any continuous map between pointed spaces. The homotopy cofiber of f is
defined to be the colimit (in the category of spaces) of the diagram

X //

��

Mf

∗

.

If f : X → ∗ is the constant map, find the homotopy cofiber of f . It is a space you’ve studied
before.

3. Fibrations

A continuous map p : E → B is called a fibration if for any space Y , the following dotted arrow
exists, given that the rest of the diagram commutes:

Z

(y,0)

��

// E

p

��
Z × [0, 1]

66

// B

This means that any homotopy of Z occurring in the base B can be lifted to the space E.

(a) Let f : X → Y be any continuous map. Let

Nf := X ×f Maps([0, 1], Y ) = {(x, γ) such that γ(0) = f(x)}
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be the mapping path space of f . As a set, it is as indicated. As a space, we take the subspace
topology inherited from X×Maps([0, 1], Y ), then we apply the functor k to make it a compactly
generated space.

Show that the map
Nf → Y, (x, γ) 7→ γ(1)

is a fibration.

(b) Show that Nf is homotopy equivalent to X.

(c) Show that any continuous map f : X → Y factors as a homotopy equivalence, followed by a
fibration:

X ' N → Y.

(d) Fix a map f : X → Y of pointed spaces. The homotopy fiber of f is the limit (in the category
of spaces) of the following diagram:

Nf

��
∗ // Y

.

If f : ∗ → Y is the map to the base point of Y , find the homotopy fiber of f . You may see this
space again during this homework.

4. Based loop spaces and suspension-loop adjunction

Define the based loop space of X to be the topological space

ΩX := Maps∗(S
1, X).

Recall that subspaces of a compactly generated space may not be compactly generated, so by the
above, we mean the k-ification of the subspace. It’s a theorem of Milnor that if X is homotopy
equivalent to a CW complex, so is ΩX. Note that ΩX has a natural basepoint, called the constant
loop at x0.

You may take for granted that Ω defines a functor from pointed spaces to pointed spaces. On
maps, a map f : X ′ → X is sent to map ΩX ′ → ΩX in the obvious way: post-composing a loop
into X ′ by f .

(a) Let X,Y, Z be compactly generated spaces. Prove there is a homeomorphism of spaces

Maps∗(X ∧ Y,Z) ∼= Maps∗(X,Maps∗(Y,Z)).

(b) Let X and Z be compactly generated. Show there is an isomorphism of sets

[ΣX,Z] ∼= [X,ΩZ]
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where ΣX is the reduced suspension.

5. Homotopy Groups

(a) Let ΩnY = Ω . . .ΩY , where Ω is performed n times. Show that for all n, there is an isomorphism
of sets

π0(ΩnY ) ∼= πnY.

(b) Show that for all n, there is an isomorphism of sets

[Σn(S0), Y ] ∼= πnY.

(c) Show that if Y is a compactly generated, connected space, then you can recover all the homotopy
groups of Y by knowing all the homotopy groups of ΩY , and vice versa. There’s a subtlety
involved for π0ΩY . You can simply state that there’s a bijection of sets in this case, if you like.

6. Covering Spaces

A map p : E → B is called a covering, or a covering space if it is a surjection, and if for each
b ∈ B, there is an open neighborhood b ∈ Ub ⊂ B such that each connected component of p−1(Ub)
is open in E, and is mapped homeomorphically onto Ub by p.

Example. Let p : R→ S1 be the map sending t 7→ ei2πt. Then any connected, open arc U on
S1 has preimage p−1(U) consisting of a disjoint union of connected open intervals, each of which is
homeomorphic to U under the projection map.

This local homeomorphism property makes the world go round when we’re dealing with covering
spaces, as we’ll see.

(a) Let p : E → B be a covering space. For any x ∈ E, b = p(x), show that any path γ : [0, 1]→ B
with γ(0) = p(x) has a unique lift to E. (Hint: We did a “non-unique” version of this in class
for vibrations.)

(b) Let p : E → B be a covering space with B path-connected. Show that p is a Serre fibration.
(Hint: Is p a fiber bundle?)

(c) If p : E → B is a covering space, show that the lifting (i.e., the dotted arrow) guaranteed by
the homotopy lifting property must be unique.
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7. An application of your solutions to the covering space problem

(a) Let p : E → B be a covering space. Assume E and B are path-connected and locally con-
tractible. Show that there is an isomorphism

πn(E) ∼= πn(B)

for all n ≥ 2.

(b) Given that the real line is a covering space of S1, compute πn(S1) for all n ≥ 2.

(c) Show that if p1 : E1 → B1 is a covering space, and p2 : E2 → B2 is a covering space, then the
map

E1 × E2 → B1 ×B2, (e1, e2) 7→ (p1e1, p2e2)

is a covering space.

(d) Show that for all k ≥ 0, the k-torus T k := S1 × . . . S1 has vanishing higher homotopy groups.
That is,

πn(T k) = 0 whenever n ≥ 2.

(e) More generally, if any space X admits a covering space E → X where E is contractible, show
that

πn(X) = 0 for all n ≥ 2.


