Homework 8

Due date: Friday, November 1.

0. Notation and Remarks

Pointed maps. Given any two pointed spaces X = (X, xzp) and Y = (Y, yo) let
Maps, (X,Y)

denote the set of pointed, continuous maps. These are maps f : X — Y such that f(z¢) = yo.
Note that this mapping space is pointed—the constant map is the basepoint. We denote by

[X,Y] =Maps,(X,Y)/ ~
the set of homotopy classes of maps.

Mapping Spaces. Let X and Y be topological spaces. Recall that Maps(X,Y’) is the space
of continuous maps from X to Y, obtained by turning the compact-open topology into a compactly
closed topology.

1. Topology of mapping spaces

(a) Let X and Y be compactly generated spaces. Prove that Maps(X,Y’) is compactly generated.
Can you weaken the assumptions on X and Y7

(b) Let X and Y be compactly generated spaces. Prove that two maps fo,f1 : X — Y are
homotopic if and only if there is a continuous map

[0,1] — Maps(X,Y)
such that 0 — fo and 1 — fi.

It is a theorem of Milnor that Maps(X,Y) is homotopy equivalent to a CW complex if X and
Y are CW complexes.

2. Cofibrations

A continuous map i : A — X is called a cofibration if for any space Z, the following dotted
arrow exists, given that the rest of the diagram commutes:

Maps({0}, Z) ~— X

—~
—
—
-

2z~ A
Maps([0,1], Z) <——— A
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This means that any homotopy of A extends to a homotopy on all of X.

(a)

Let f: X — Y be any continuous map. Show that
X — My, x> (x,0)
is a cofibration. Recall that My is the mapping cylinder, defined to be

(X x [0, JTY)/(2, 1) ~ f(2).

(As a hint: Try using the technique from a previous homework, which shows that a certain
subspace is a (not necessary deformation) retract of a product space).

Show that any continuous map f : X — Y factors as a cofibration, followed by a homotopy
equivalence:

X—o>M~Y

State in one sentence, using previous homework, why the continuous map X* — X of including
the k-skeleton into a CW complex is a cofibration.

Let f: X — Y be any continuous map between pointed spaces. The homotopy cofiber of [ is
defined to be the colimit (in the category of spaces) of the diagram

X —— My .
*
If f: X — x is the constant map, find the homotopy cofiber of f. It is a space you've studied
before.
3. Fibrations

A continuous map p : E — B is called a fibration if for any space Y, the following dotted arrow

exists, given that the rest of the diagram commutes:

4L ——>F

Z x [0,1]

This means that any homotopy of Z occurring in the base B can be lifted to the space F.

(a)

Let f: X — Y be any continuous map. Let
Ny :=X x;Maps([0,1],Y) = {(z,) such that v(0) = f(x)}
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be the mapping path space of f. As a set, it is as indicated. As a space, we take the subspace
topology inherited from X x Maps([0,1],Y"), then we apply the functor k to make it a compactly
generated space.
Show that the map
Ny =Y,  (z,7)=~(1)
is a fibration.

Show that Ny is homotopy equivalent to X.

Show that any continuous map f : X — Y factors as a homotopy equivalence, followed by a
fibration:
X~N-—=>Y.

Fix amap f: X — Y of pointed spaces. The homotopy fiber of f is the limit (in the category
of spaces) of the following diagram:

Ny .

l

x —>Y

If f:% — Y is the map to the base point of Y, find the homotopy fiber of f. You may see this
space again during this homework.

4. Based loop spaces and suspension-loop adjunction

Define the based loop space of X to be the topological space
QX := Maps, (S*, X).

Recall that subspaces of a compactly generated space may not be compactly generated, so by the
above, we mean the k-ification of the subspace. It’s a theorem of Milnor that if X is homotopy
equivalent to a CW complex, so is QX. Note that QX has a natural basepoint, called the constant
loop at xg.

You may take for granted that {2 defines a functor from pointed spaces to pointed spaces. On

maps, a map f : X' — X is sent to map QX' — QX in the obvious way: post-composing a loop
into X’ by f.

(a)

(b)

Let X,Y, Z be compactly generated spaces. Prove there is a homeomorphism of spaces

Maps, (X AY, Z) = Maps, (X, Maps, (Y, Z)).

Let X and Z be compactly generated. Show there is an isomorphism of sets
XX, 7]~ [X,Q7]
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where XX is the reduced suspension.

5. Homotopy Groups

(a) Let Q"Y = Q...QY, where Q is performed n times. Show that for all n, there is an isomorphism
of sets

m(Q"Y) =2 w,Y.

(b) Show that for all n, there is an isomorphism of sets

[27(S8%),Y] =Y.

(c) Show that if Y is a compactly generated, connected space, then you can recover all the homotopy
groups of Y by knowing all the homotopy groups of QY, and vice versa. There’s a subtlety
involved for mo€2Y. You can simply state that there’s a bijection of sets in this case, if you like.

6. Covering Spaces

A map p: E — B is called a covering, or a covering space if it is a surjection, and if for each
b € B, there is an open neighborhood b € U, C B such that each connected component of p~1(U)
is open in E, and is mapped homeomorphically onto Uy by p.

Example. Let p: R — S! be the map sending ¢ — €??™*. Then any connected, open arc U on
S1 has preimage p~!(U) consisting of a disjoint union of connected open intervals, each of which is
homeomorphic to U under the projection map.

This local homeomorphism property makes the world go round when we’re dealing with covering
spaces, as we’'ll see.

(a) Let p: E — B be a covering space. For any z € E,b = p(z), show that any path v : [0,1] — B
with v(0) = p(x) has a unique lift to E. (Hint: We did a “non-unique” version of this in class
for vibrations.)

(b) Let p: E — B be a covering space with B path-connected. Show that p is a Serre fibration.
(Hint: Is p a fiber bundle?)

(¢) If p: E — B is a covering space, show that the lifting (i.e., the dotted arrow) guaranteed by
the homotopy lifting property must be unique.
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7. An application of your solutions to the covering space problem

Let p : E — B be a covering space. Assume FE and B are path-connected and locally con-
tractible. Show that there is an isomorphism

() = m,(B)
for all n > 2.

Given that the real line is a covering space of S*, compute 7, (S!) for all n > 2.

Show that if p; : 4 — Bj is a covering space, and ps : E5 — Bs is a covering space, then the
map

Ey X B3 — By X Bs, (e1,e2) — (pr€1, pae2)
is a covering space.

Show that for all k > 0, the k-torus 7% := S* x ... S! has vanishing higher homotopy groups.
That is,
7 (TF) =0 whenever n > 2.

More generally, if any space X admits a covering space E — X where F is contractible, show
that
(X)) =0 for all n > 2.



