Homework 11

Due date: Friday, November 22. Hand in every problem except problem 5.

Notation and Remarks. We let Pairs denote the category of pairs of spaces, with continuous maps of pairs between them. To be explicit, objects are pairs $A \subset X$, and morphisms $f : (X, A) \to (Y, B)$ are continuous maps $f : X \to Y$ such that $f(A) \subset B$.

As usual, a homotopy between such maps is a homotopy of $F : X \times [0,1] \to Y$ such that $F(A \times [0,1]) \subset B$.

Axioms for cohomology. Recall from class the Eilenberg-Steenrod axioms for cohomology. You'll need this in Problem 5.

DEFINITION 1. A cohomology theory is a sequence of functors

$$K^n: \mathsf{Pairs}^{\mathrm{op}} o \mathsf{Groups}, \qquad n \in \mathbb{Z}$$

 $together \ with \ natural \ transformations$

$$\delta: K^{n-1}(A, \emptyset) \to K^n(X, A), \qquad n \in \mathbb{Z}$$

such that the following properties hold:

- (1) (Homotopy.) If $f, g: (X, A) \to (Y, B)$ are homotopic as maps of pairs, then $K^n(f) = K^n(g): K^n(Y, B) \to K^n(X, A)$ for all n.
- (2) (Excision.) If $A \subset X$ has closure contained in an open set U, then the inclusion $(X A, U A) \rightarrow (X, U)$ induces an isomorphism

$$K^n(X,U) \to K^n(X-A,U-A).$$
 $n \in \mathbb{Z}$

(3) (Additivity.) If $X = \coprod_{\alpha} X_{\alpha}$ and $A = \coprod_{\alpha} A_{\alpha}$ with (X_{α}, A_{α}) pairs of spaces, then the maps $(X_{\alpha}, A_{\alpha}) \to (X, A)$ induce an isomorphism

$$K^n(X,A) \to \prod_{\alpha} K^n(X_{\alpha},A_{\alpha}) \qquad n \in \mathbb{Z}$$

(4) (Exactness.) The sequence

$$\cdots \longrightarrow K^n(X, A) \longrightarrow K^n(X, \emptyset) \longrightarrow K^n(A, \emptyset) \xrightarrow{\delta} K^{n+1}(X, A)$$

is exact.

REMARK 0.1. Note that $K^n(pt, \emptyset)$ need not be 0 for $n \neq 0$. This is a very general definition.

HOMEWORK 11

REMARK 0.2. Note that by excision, and the usual commutative diagram of pairs of spaces

we can bootstrap the far-right vertical homeomorphism to conclude that the leftmost vertical map induces an isomorphism $K^n(X/A, A/A) \to K^n(X, A)$.

1. Cohomology and direct product rings

Let X_{α} be a collection of pointed spaces and let $X = \bigvee_{\alpha} X_{\alpha}$. Prove there is an isomorphism of (non-unital) graded rings

$$\tilde{H}^*(X) \cong \prod_{\alpha} \tilde{H}^*(X_{\alpha})$$

(By definition, if K and H are graded rings, the nth graded piece of $K\times H$ is $K_n\times H_n.$)

2. Relative cup product via cross product

Given two spaces X and Y, let $p_1 : X \times Y \to X$ and $p_2 : X \times Y \to Y$ denote the two projections. Fix $A \subset X$ and $B \subset Y$.

Recall we have a cross product map

$$\times: H^*(X, A) \otimes H^*(Y, B) \to H^*(X \times Y, A \times Y + X \times B) \cong H^*(X \times Y, A \times Y \cup X \times B)$$

defined by the map

$$\alpha \otimes \beta \mapsto p_1^*(\alpha) \cup p_2^*(\beta).$$

On the other hand, the cup product for X restricts to the relative cup product

$$\cup: H^*(X, A) \otimes H^*(X, A) \to H^*(X, A), \qquad \alpha \otimes \beta \mapsto \alpha \cup \beta$$

Using the cross product for X = Y, A = B, prove that the diagram

$$\begin{array}{cccc} H^*(X,A) \otimes H^*(X,A) & & & \cup & & \to H^*(X,A) \\ & & & & & & \downarrow p_1^* \otimes p_2^* & & & & & \land^* & \uparrow \\ & & & & & & & & \downarrow \\ H^*(X \times X, A \times X) \otimes H^*(X \times X, A \times X) & & & & \cup & \to H^*(X \times X, A \times X \cup X \times A) \end{array}$$

commutes.

(This is the relative version of the statement from class that

$$H^{*}(X) \otimes H^{*}(X) \xrightarrow{\cup} H^{*}(X)$$

$$\downarrow^{p_{1}^{*} \otimes p_{2}^{*}} \qquad \Delta^{*} \uparrow^{*}$$

$$H^{*}(X \times X) \otimes H^{*}(X \times X) \xrightarrow{\cup} H^{*}(X \times X)$$

commutes.)

3. Cup products of suspensions vanish

Assume $X = A \cup B$ where A and B are contractible open subsets with $A \cap B \neq \emptyset$.

(a) Using the relative cup product map

 $H^k(X,A) \otimes H^l(X,B) \to H^{k+l}(X,A \cup B)$

prove that for any k, l such that $k + l \ge 1$, the map

$$\cup: H^k(X) \otimes H^l(X) \to H^{k+l}(X)$$

is zero. (Hint: You may want to use the previous problem.)

(b) Let X be any space. Prove that the cup product map on ΣX is always zero for elements in degree k, l with $k + 1 \ge 1$.

4. Weak homotopy equivalences preserve cohomology rings

Let X and Y be pointed spaces, and let $f: X \to Y$ be a weak homotopy equivalence. Prove that it induces an isomorphism of graded rings $f^*: H^*(Y) \to H^*(X)$.

5. The maps in the Universal Coefficient Theorem and the Künneth Formula

Assume that A_{\bullet} is a chain complex such that A_n is a free abelian group for all n. (This is nice because any subgroup of a free abelian group is once again free.) Let B be any other chain complex. The following problems are not easy.

(a) Verify that the map

$$H^{n}(\hom(A_{\bullet},\mathbb{Z})) \to \hom(H_{n}(A_{\bullet}),\mathbb{Z}), \qquad [f] \mapsto ([a] \mapsto f(a))$$

is a surjection.

(b) Verify that the map

$$\bigoplus_{p+q=n} H_p(A_{\bullet}) \otimes H_q(B_{\bullet}) \to H_n(A_{\bullet} \otimes B_{\bullet}), \qquad [a] \otimes [b] \mapsto [a \otimes b]$$

is an injection.

6. Axioms for cohomology, Part I

Suppose L and K are cohomology theories for CW pairs. Let $u: L \to K = \{u^n : L^n \to K^n\}$ be a natural transformation between them. The goal of the next sequence of problems is to begin proving:

THEOREM 6.1. If u induces an isomorphism $H^n(pt, \emptyset) \cong K^n(pt, \emptyset)$ for all n, then $u : H^n(X, A) \to K^n(X, A)$ is an isomorphism for all CW pairs (X, A).

In the following problem you may assume

LEMMA 6.2 (The Five Lemma). If

is a commutative diagram of exact sequences, and all the vertical maps are isomorphisms where indicated, then the middle vertical map is also an isomorphism.

(a) Prove using a long exact sequence that if

$$\iota^n: L^n(X, \emptyset) \to K^n(X, \emptyset)$$

is an isomorphism for all spaces X and all n, then u is an isomorphism for all pairs (X, A).

- (b) Prove that if $u^n : L^n(pt, \emptyset) \to K^n(pt, \emptyset)$ is an isomorphism for all n, then it is an isomorphism for all zero-dimensional CW complexes.
- (c) Assume we have proven that u^k is an isomorphism for all (X, \emptyset) for k < n and $X^{n-1} = X$. Prove using a long exact sequence that $u^n : L^n(D^n, \partial D^n) \to K^n(D^n, \partial D^n)$ is an isomorphism.
- (d) Assume we have proven that u^k is an isomorphism for all (X, \emptyset) for k < n and $X^{n-1} = X$. Let $Y^n = Y$ be a CW complex of dimension n, and let

$$\Phi:(\coprod_\alpha D^n,\coprod_\alpha \partial D^n)\to (Y^n,Y^{n-1})$$

be the map induced by the attaching maps. Show that

$$\begin{split} K^m(\Phi): K^m(Y^n, Y^{n-1}) \to K^m(\coprod D^n, \coprod \partial D^n), \qquad L^m(\Phi): L^m(Y^n, Y^{n-1}) \to L^m(\coprod D^n, \coprod \partial D^n), \\ \text{are isomorphisms for all } m. \text{ (For instance, by passing to the pair } (\lor S^n, \ast).) \end{split}$$

(e) Conclude that if $u^m : L^m(pt, \emptyset) \to K^m(pt, \emptyset)$ is an isomorphism for all m, then $u^m : L^m(X, \emptyset) \to K^m(X, \emptyset)$ is an isomorphism for all finite-dimensional CW complexes X, and for all m.

We will stop here, having only proven the theorem when X and A are both finite dimensional. The infinite-dimensional case requires some categorical bru-ha-ha that we haven't discussed.