
Homework 11

Due date: Friday, November 22. Hand in every problem except problem 5.

Notation and Remarks. We let Pairs denote the category of pairs of spaces, with continuous
maps of pairs between them. To be explicit, objects are pairs A ⊂ X, and morphisms f : (X,A)→
(Y,B) are continuous maps f : X → Y such that f(A) ⊂ B.

As usual, a homotopy between such maps is a homotopy of F : X × [0, 1] → Y such that
F (A× [0, 1]) ⊂ B.

Axioms for cohomology. Recall from class the Eilenberg-Steenrod axioms for cohomology.
You’ll need this in Problem 5.

Definition 1. A cohomology theory is a sequence of functors

Kn : Pairsop → Groups, n ∈ Z

together with natural transformations

δ : Kn−1(A, ∅)→ Kn(X,A), n ∈ Z

such that the following properties hold:

(1) (Homotopy.) If f, g : (X,A) → (Y,B) are homotopic as maps of pairs, then Kn(f) =
Kn(g) : Kn(Y,B)→ Kn(X,A) for all n.

(2) (Excision.) If A ⊂ X has closure contained in an open set U , then the inclusion (X −
A,U −A)→ (X,U) induces an isomorphism

Kn(X,U)→ Kn(X −A,U −A). n ∈ Z

(3) (Additivity.) If X =
∐
αXα and A =

∐
αAα with (Xα, Aα) pairs of spaces, then the maps

(Xα, Aα)→ (X,A) induce an isomorphism

Kn(X,A)→
∏
α

Kn(Xα, Aα) n ∈ Z

(4) (Exactness.) The sequence

. . . // Kn(X,A) // Kn(X, ∅) // Kn(A, ∅) δ // Kn+1(X,A)

is exact.

Remark 0.1. Note that Kn(pt, ∅) need not be 0 for n 6= 0. This is a very general definition.
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2 HOMEWORK 11

Remark 0.2. Note that by excision, and the usual commutative diagram of pairs of spaces

(X,A) //

��

(X,U)

��

(X −A,U −A)oo

��
(X/A,A/A) // (X/A,U/A) (X/A−A/A,U/A−A/A)oo

we can bootstrap the far-right vertical homeomorphism to conclude that the leftmost vertical map
induces an isomorphism Kn(X/A,A/A)→ Kn(X,A).

1. Cohomology and direct product rings

Let Xα be a collection of pointed spaces and let X = ∨αXα. Prove there is an isomorphism of
(non-unital) graded rings

H̃∗(X) ∼=
∏
α

H̃∗(Xα).

(By definition, if K and H are graded rings, the nth graded piece of K ×H is Kn ×Hn. )

2. Relative cup product via cross product

Given two spaces X and Y , let p1 : X×Y → X and p2 : X×Y → Y denote the two projections.
Fix A ⊂ X and B ⊂ Y .

Recall we have a cross product map

× : H∗(X,A)⊗H∗(Y,B)→ H∗(X × Y,A× Y +X ×B) ∼= H∗(X × Y,A× Y ∪X ×B)

defined by the map

α⊗ β 7→ p∗1(α) ∪ p∗2(β).

On the other hand, the cup product for X restricts to the relative cup product

∪ : H∗(X,A)⊗H∗(X,A)→ H∗(X,A), α⊗ β 7→ α ∪ β

Using the cross product for X = Y , A = B, prove that the diagram

H∗(X,A)⊗H∗(X,A)

p∗1⊗p
∗
2

��

∪ // H∗(X,A)

H∗(X ×X,A×X)⊗H∗(X ×X,A×X)
∪ // H∗(X ×X,A×X ∪X ×A)

∆∗

OO

commutes.
(This is the relative version of the statement from class that

H∗(X)⊗H∗(X)

p∗1⊗p
∗
2

��

∪ // H∗(X)

H∗(X ×X)⊗H∗(X ×X)
∪ // H∗(X ×X)

∆∗

OO

commutes.)
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3. Cup products of suspensions vanish

Assume X = A ∪B where A and B are contractible open subsets with A ∩B 6= ∅.

(a) Using the relative cup product map

Hk(X,A)⊗H l(X,B)→ Hk+l(X,A ∪B)

prove that for any k, l such that k + l ≥ 1, the map

∪ : Hk(X)⊗H l(X)→ Hk+l(X)

is zero. (Hint: You may want to use the previous problem.)

(b) Let X be any space. Prove that the cup product map on ΣX is always zero for elements in
degree k, l with k + 1 ≥ 1.

4. Weak homotopy equivalences preserve cohomology rings

Let X and Y be pointed spaces, and let f : X → Y be a weak homotopy equivalence. Prove
that it induces an isomorphism of graded rings f∗ : H∗(Y )→ H∗(X).

5. The maps in the Universal Coefficient Theorem and the Künneth Formula

Assume that A• is a chain complex such that An is a free abelian group for all n. (This is
nice because any subgroup of a free abelian group is once again free.) Let B be any other chain
complex. The following problems are not easy.

(a) Verify that the map

Hn(hom(A•,Z))→ hom(Hn(A•),Z), [f ] 7→ ([a] 7→ f(a))

is a surjection.

(b) Verify that the map⊕
p+q=n

Hp(A•)⊗Hq(B•)→ Hn(A• ⊗B•), [a]⊗ [b] 7→ [a⊗ b]

is an injection.

6. Axioms for cohomology, Part I

Suppose L and K are cohomology theories for CW pairs. Let u : L → K = {un : Ln → Kn}
be a natural transformation between them. The goal of the next sequence of problems is to begin
proving:

Theorem 6.1. If u induces an isomorphismHn(pt, ∅) ∼= Kn(pt, ∅) for all n, then u : Hn(X,A)→
Kn(X,A) is an isomorphism for all CW pairs (X,A).

In the following problem you may assume
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Lemma 6.2 (The Five Lemma). If

Q //

∼=
��

A //

∼=
��

B //

��

C //

∼=
��

Z

∼=
��

Q′ // A′ // B′ // C ′ // Z ′

is a commutative diagram of exact sequences, and all the vertical maps are isomorphisms where
indicated, then the middle vertical map is also an isomorphism.

(a) Prove using a long exact sequence that if

un : Ln(X, ∅)→ Kn(X, ∅)
is an isomorphism for all spaces X and all n, then u is an isomorphism for all pairs (X,A).

(b) Prove that if un : Ln(pt, ∅)→ Kn(pt, ∅) is an isomorphism for all n, then it is an isomorphism
for all zero-dimensional CW complexes.

(c) Assume we have proven that uk is an isomorphism for all (X, ∅) for k < n and Xn−1 = X.
Prove using a long exact sequence that un : Ln(Dn, ∂Dn)→ Kn(Dn, ∂Dn) is an isomorphism.

(d) Assume we have proven that uk is an isomorphism for all (X, ∅) for k < n and Xn−1 = X. Let
Y n = Y be a CW complex of dimension n, and let

Φ : (
∐
α

Dn,
∐
α

∂Dn)→ (Y n, Y n−1)

be the map induced by the attaching maps. Show that

Km(Φ) : Km(Y n, Y n−1)→ Km(
∐

Dn,
∐

∂Dn), Lm(Φ) : Lm(Y n, Y n−1)→ Lm(
∐

Dn,
∐

∂Dn),

are isomorphisms for all m. (For instance, by passing to the pair (∨Sn, ∗).)

(e) Conclude that if um : Lm(pt, ∅)→ Km(pt, ∅) is an isomorphism for all m, then um : Lm(X, ∅)→
Km(X, ∅) is an isomorphism for all finite-dimensional CW complexes X, and for all m.

We will stop here, having only proven the theorem when X and A are both finite dimensional.
The infinite-dimensional case requires some categorical bru-ha-ha that we haven’t discussed.


