Homework 12: Cohomology rings of some product spaces

Due Monday, December 2nd, 2013. Hand in every problem except Problem 7(a).

Throughout this homework, you may replace the ring R by the integers, since we haven't talked about cohomology with coefficients explicitly enough.

0. Goals

In this homework set you'll prove a cool theorem in a cool way.

THEOREM 0.1. Let X and Y be arbitrary spaces. Assume $H^k(Y; R)$ is a free, finitely generated *R*-module for all k. Then the cross product

$$H^*(X; R) \otimes_R H^*(Y; R) \to H^*(X \times Y; R)$$

is an isomorphism of graded rings.

This is cool because now you can compute cohomology *rings* for a lot of product spaces. It's proved in a cool way because you will see a wonderful principle in action: Cohomology theories are determined by their value on a point.

REMARK 0.2. If $R = \mathbb{Z}$, a finitely generated free *R*-module is simply a free abelian group on finitely many generators. Further, tensoring over $R = \mathbb{Z}$ is the usual tensor product of abelian groups, and $H^*(X; Z) = H^*(X)$.

1. h, k and the natural transformation

Fix a CW complex Y. We define two sequences of functors

$$h^n, k^n : \mathsf{Pairs} \to \mathsf{AbGrps}$$

as follows:

$$h^{n}(X,A) = \bigoplus_{i} H^{i}(X,A;R) \otimes_{R} H^{n-i}(Y;R)$$

$$k^{n}(X, A) = H^{n}(X \times Y, A \times Y; R).$$

Note h^n is the term that appears in the Kunneth formula.

On morphisms, any map $f: (X, A) \to (X', A')$ induces maps

$$h^{n}(f) = \bigoplus_{i} (f^{*} \otimes_{R} \operatorname{id}_{H^{n-i}(Y;R)}), \qquad k^{n}(f) = (f \times \operatorname{id}_{Y})^{*}.$$

Where f^* denotes the map on cohomology induced by the continuous map f.

(a) Show that the cross product

$$\times : H^{i}(X, A; R) \otimes H^{n-i}(Y, \emptyset; R) \to H^{n}(X \times Y, A \times Y; R), \qquad [\phi] \otimes [\psi] \mapsto [p_{1}^{*}\phi \cup p_{2}^{*}\psi]$$

(really, the direct sum of it over all $0 \le i \le n$) defines a natural transformation u^n from h^n to k^n for every n. (Note that the Y variable is fixed!)

(b) Show that the cross product above is a map of graded rings. (Recall that given two graded commutative rings A and B, the product on $A \otimes B$ is defined by

$$(a_1 \otimes b_1)(a_2 \otimes b_2) := (-1)^{|a_2||b_1|} a_1 a_2 \otimes b_1 b_2.$$

We mentioned this briefly in class.)

In the problems that follow, remember that singular cohomology—i.e., H^* itself—satisfies the Eilenberg-Steenrod axioms.

2. Homotopy

Let f, g be continuous maps of pairs between (X, A) and (X', A'). Prove that if f and g are homotopic as maps of pairs, then $h^n(f) = h^n(g)$ for all n, and likewise for k^n .

3. Excision

Show that both h and k satisfy the excision axiom.

4. Exactness

In what follows, you'll want to bootstrap the usual long exact sequences of relative cohomology groups.

- (a) Show that k satisfies the exactness axiom.
- (b) Show that h satisfies the exactness axiom. (This is slightly more annoying.)

5. Products

- (a) Show that k satisfies the product axiom.
- (b) Show that if N is a finitely generated, free R module, then

$$(\prod_{\alpha} M_{\alpha}) \otimes_{R} N \cong \prod_{\alpha} (M_{\alpha} \otimes_{R} N).$$

Show that h satisfies the product axiom.

8. APPLYING THE THEOREM

6. Compatibility with δ

Let $\delta: H^k(X, A; R) \to H^{k+1}(X, A; R)$ be the connecting homomorphism for the LES in relative cohomology. Finally, let $\partial: H_{n+1}(X, A) \to H_n(A)$ be the connecting map in the LES for relative homology (with \mathbb{Z} coefficients).

(a) Let

$$h: H^{n+1}(X, A); R) \to \hom(H_{n+1}(X, A), R)$$

denote the map in the universal coefficient theorem. (Recall that the relative cochain complex is actually a hom complex!)

Prove that the diagram

is commutative. (This is standard but tedious diagram chasing.)

(b) Prove that for any pair (X, A) and any space Y, the diagram

$$\begin{array}{c} H^{k}(A;R) \otimes_{R} H^{l}(Y;R) \xrightarrow{\delta \otimes \mathrm{id}} H^{k+1}(X,A;R) \otimes_{R} H^{l}(Y;R) \\ \downarrow \times & \downarrow \times \\ H^{k+1}(A \times Y;R) \xrightarrow{\delta} H^{k+l+1}(X \times Y,A \times Y;R) \end{array}$$

commutes. Here, the vertical maps are the cross product.

7. Point

- (a) Show that the natural transformations u^n induce isomorphisms on h^n and k^n for $(X, A) = (pt, \emptyset)$.
- (b) Explain how you have proven the main theorem. (You may assume a theorem from previous homework.) Make sure you explain why the isomorphism of $h^n(X, A), k^n(X, A)$ as groups is enough to show we actually have an isomorphism of rings.
- (c) Where did you have to use the hypothesis on Y?

8. Applying the theorem

(a) Phil will show you this week that $H^*(\mathbb{C}P^n)$ is actually isomorphic to the polynomial ring $\mathbb{Z}[x]/x^{n+1}$, with x in degree 2. Compute the cohomology ring of $\mathbb{C}P^n \times \mathbb{C}P^m$ for $n, m \ge 0$.

- (b) Compute the cohomology ring of $S^n \times S^m$.
- (c) Show $S^n \times S^m$ is not homotopy equivalent to $S^n \vee S^m \vee S^{n+m}$. Could you have shown this by simply knowing the groups H^* and H_* ?