
Bridgeland Stability Conditions

09/10/13 (Lecture 3)

1 A Theorem of Toda and the MMP

(For further information, see Toda’s paper at arxiv:1205.3602.)

1.1 Review from Last Time

For this discussion, let X be a fixed complex projective smooth variety
of dimension 2. Let Stab(X) be the moduli space of Bridgeland stability
conditions on DbCoh(X), organized into a complex manifold (note, we still
haven’t defined this topology, we haven’t defined what it means for two ♥’s
to be close), and let Stab(X)R be the ‘real’ part of this manifold. Note the
following pullback square

Stab(X)R //

��

Stab(X)

��
NS(X)R // N(X)∨C

Here NS(X) refers to the Neron-Severi group, and N(X) the numerical
Grothendieck group of X. For a fixed Bridgeland stability condition σ =
(Z, C), denote byMσ([Ox]) the (algebraic) moduli space of Z-stable objects
in C with φ = 1 and ch(E) = ch(Ox) for x ∈ X.

Theorem 1.1. (Toda, 2012) For all smooth projective Y with a birational
map X → Y , there is an open, nonempty subset U(Y ) ⊂ Stab(X)R such
that

1. Mσ([Ox]) ' Y for all σ ∈ U(Y ).

2. If X → Y factors through Ỹ → Y (the blowup of Y at a point), then

U(Y ) ∩ U(Ỹ ).

The rough intuition of this second condition is that, in the space of sta-
bility conditions, we can ‘move’ along from one U(Y ) to the next, along
a sequence of birational equivalences (in particular, to its minimal model).
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Note that, here, X need not be Calabi-Yau! Any dimension 2 smooth com-
plex projective variety will do.

Often, dimStabBL(X) = 2dimStabphysics(X). Here, the moduli space
of ‘physics’ stability conditions refers to the space of deformations (?). In
general, the number of objects generating the Grothendieck group should
be double the dimension of the deformation space. (? I was a bit confused
here with these comments.)

Last, note that by the special case where Y = X, we have an open
subset U ⊂ Stab(X)R such that Mσ([OX ]) = XL for all σ ∈ U . This will
be important when we revisit the reconstruction problem.

1.2 Kodaira Dimension

The Kodaira dimension K(X) of a projective variety X is an invariant con-
structed from the canonical bundle that roughly measures how ‘generic’ X
is among projective varieties of that dimension.

Definition 1.2. Let KX = Ωd
X denote the line bundle of holomorphic top

forms (d is the dimension of X). Then we can construct the graded ring
S(X) =

⊕
n≥0

H0(X,K⊗nX ). The ring structure arises in the obvious way.

This is called the ‘canonical ring’ of X. K(X) is simply the dimension
of the projective variety Proj(S(X)): it is either a nonnegative integer in
{0, 1, . . . , dimX}, or −∞.

(Question by Saul: What if we take
⊕
n≥0

H•(K⊗nX )? This has a ring

structure as well, because elements of Ext•(OX ,K⊗nX ) and Ext•(OX ,K⊗mX )
can be composed by pushouts. What happens?)

Exercise: If KX = OX , prove that K(X) = 0.

Solution: S(X) =
⊕

n≥0H
0(O⊗nX ) '

⊕
n≥0H

0(OX) '
⊕
n≥0

C ' C[x]

Now let’s write some examples of projective varieties and their Kodaira
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dimensions.

dim(X) = 1

K = −∞: CP1

K = 0: T 2 (the torus)
K = 1: Any surfaces of genus ≥ 2

dim(X) ≥ 2

K = −∞: X birational to Pn works. In general, del Pezzo surfaces,
or Fano schemes (i.e., where K−1X , the inverse of the canonical line bundle
under tensor product, is ample) work.

K = 0: Abelian varieties, or Calabi-Yau varieties.
...
K = dim(X): This is the ‘generic’ case. For example, if X is a hyper-

surface in some PN of degree > N + 1.

1.3 Goal of the Minimal Model Program (for varieties of
general type)

Given X of general type (i.e., K(X) = dim(X)?), we’d like to find some X ′

(a ‘minimal model’) such that

• There is a birational map X → X ′

• For all curves C ⊂ X ′, KX′ ·X ≥ 0.

Theorem 1.3. (Castelnuovo) If X is a surface, then this can be achieved
by successive contractions of P1’s in X (i.e., blow-downs).
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2 The Reconstruction Problem

2.1 The Idea

Recall the reconstruction problem, where, given the triangulated category
DbCoh(X) and possibly some other information, we want to reconstruct
the variety X. Remember now that by Toda’s theorem, applied in the
special case where Y = X, we have an open subset U ⊂ Stab(X)R such that
Mσ([OX ]) = X for all σ ∈ U . So somehow, this suggests a way to recover X
as the moduli space of objects stable under a particular class U of stability
conditions.

So, when can we reconstruct X? It turns out that if X is a surface, you
can if you choose the right stability conditions.

Theorem 2.1. (Bondal-Orlov) If X has ample KX or K−1X , you can recon-
struct X from DbCoh(X), if you have the shift functor [1].

The proof of this theorem involves two key ideas.

1. Is there a set of objects which seem like they could allow you to re-
construct X? Well it would be really nice if we could get ahold of
the skyscraper sheaves on X. So using algebraic-categorical criteria,
namely, the notion of a point object, we’ll be able to pull these objects
out.

2. We also need some way to ‘topologize’ this set of point objects, so
that we know how to glue them together into X. In order to do so,
we define other algebraic criteria to pick out objects that look like line
bundles on X. The idea is that if we know the line bundles, we can
define their divisors, and the complement of a divisor is an open set on
the collection of point objects. This allows us to recover the topology.

2.2 Algebraic Nonsense

Recall that if X is a smooth projective variety over C of dimension n, there
is a dualizing sheaf ωX (also called the canonical bundle) such that

Exti(A,B) ' Extn−i(B,A⊗ ωX)∨
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(This is the statement of Serre duality.)

Definition 2.2. Let D be a C-linear category. Suppose that all Exti’s are
finite dimensional in D. A Serre functor S : D → D is an additive functor
such that

• S is an equivalence of categories.

• There are functorial isomorphisms homD(A,B) ' homD(B,SA)∨. (So
for example, if D = DbCoh(X), S(−) = −⊗ ωX [n].)

• The following diagram commutes

hom(A,B)
iso //

S
��

hom(B,SA)∨

hom(SA, SB)
iso // hom(SB, S2A)∨

S∨

OO

where all arrows are isomorphisms.

Theorem 2.3. If S exists, it’s unique up to automorphisms of D.

Definition 2.4. An object P ∈ obD is point-like if

1. S(P ) = P [`] for some integer `. (In DbCoh(X), S(P ) = P ⊗ ωX [n] =
P [n].)

2. Hom<0(P, P ) = 0 (these Hom sets are graded C-algebras)

3. Hom0(P, P ) is a field.

(Remark: You can compute that Ext of a skyscraper sheaf is a torus.
Well, it turns out that Lagrangian tori in the A-model correspond to skyscraper
sheaves in the B-model.)

Theorem 2.5. If P is point-like and D = DbCoh(X), then P ' OX [`] for
some `.

(Alert: the ampleness of P is crucial here, because it allows you to build
maps to some Pn.)
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Proof. We’ll mention a piece of the proof. Let P → I• be an injective
resolution. Then we have a sequence of sheaves

0→H (OX , I0)→H (OX , I1)→ · · ·

Let H i be the cohomology sheaves of P (i.e., the cohomology sheaves of
this sequence). By (1) in the definition of point-like, S(P ) ' P [n] (assume
` = n). Then

P ⊗ ωX [n] ' P [n] =⇒ P ⊗ ωX ' P

=⇒ H i ⊗ ωX 'H i

So now let PH i be the Hilbert polynomial of H i. (remember that the degree
is dim(supp(H i)).)

χ(H i) = χ(H i ⊗ ω⊗mX ) = PH i(m)

for any m. So PH i is constant, and thus supp(H i) is a union of closed
points.

(There’s still work to do. We need to use the spectral sequence

Ext•(H i,H j) =⇒ Ext•(P, P )

and then utilize properties (2) and (3) of pointlike objects to get the result.
We leave this computation out.)

3 Stability Conditions on the A-Model

First off, I’ll mention a mnemonic to help you remember what the A-model
and B-model are. The homological mirror symmetry conjecture states that
you have equivalences of categories

Fukaya(X)←→ DbCoh(X∨)

The a’s in Fukaya indicate that it is the A-model, and the b in D b Coh
indicate that it is the B-model. Now that that’s out of the way...

Definition 3.1. X is called Calabi-Yau if
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• X is Kahler (ω1,1 Kahler form)

• X is equipped with a trivialization Ωn ' OX (a nowhere vanishing
section of Ωn,0, n being the dimension of X)

• (ω1,1)n = (−1)signΩn,0 ∧ Ωn,0

We claim that if X is a Calabi-Yau 3-fold, then Ω3,0 picks out stable
Lagrangians.

3.1 Setup for nenxt time

Definition 3.2. L ⊂ X is Lagrangian if

• dimRL = 1
2dimR(X)

• ω1,1|L = 0

If L is oriented, Ω3,0|L defines a C-valued voume form. That is, Ω3,0|L
equals eiφ(x) times the volume form. What happens if we integrate this? We
say L is a special Lagrangian if φ is constant on L.
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