
Bridgeland stability

1 9/17/2013 – BPS quivers, stability & wall crossing (cont.) –
guest lecture by Murad Alim

1.1 Introduction

1.1.1 Ingredients

We recall what we did last time. The goal of the program is to characterize field theories – not in terms
of minimizing an energy functional, but by using the objects (certain particles). This is in some sense
analogous to the homological approach on the mathematical side (thinking about homology, etc.). The
analogous question is: can you distinguish different categories by distinguishing their “bases” (i.e. plural of
“basis”)? The answer, in our context, will turn out to be yes.

Despite starting with Calabi–Yau geometries, we end up in 4 dimensions, with N = 2.

We have:

• The central ingredient is an r-dimensional moduli space M, a deformation space of the underlying
geometry. (Recall Hiro talked about sheaves; there the moduli space would be the deformation space
of a symplectic structure. Or if we’re talking about curves, this’d be the moduli of them.) This can
also be interpreted as the Cartan algebra of rank r, coming from the gauge group G→ U(1)r.

• We also have a lattice Γ of rank 2r of electric and magnetic charges, and the element γ = (eα,ma) ∈ Γ.
We can think of the electric/magnetic splitting as a choice of symplectic pairing 〈•, •〉 : Γ× Γ→ Z.

• For each point u ∈M, we have the central charge Zu : Γ→ C. This has Mu(γ) ≥ |Zu(γ)|.

Remark 1. Hiro points out that this lattice is always given to us in the Kontsevich–Soibelman setup that
we’ll see sometime later. This runs as

Γ

Heven(X,Q)
�

H3(X∨,Z).

-

1.2 BPS quivers

By spectrum one should think of the set of all stable objects with respect to some heart. (One really ought
to make a pun about having a “change of heart” here.) The “BPS states” are the lowest-energy particles,
which should be thought of as generating the heart (and hence the category).

Suppose γ is in the spectrum. Then so is −γ. Since Z is linear (where we fix Z = Zu for some fixed
u ∈M), we always have Z(−γ) = −Z(γ) ∈ C. The crucial thing is that a different choice gives us a different
choice of what we call particles versus antiparticles.
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Let’s choose a basis {γ1, . . . , γ2r}, such that for all particles γ, we have γ =
∑2r
i=1 ni · γi for some ni ∈ N.

Now, we define the following quiver: the nodes are labeled by the γi, and we have arrows Aaij = 〈γi, γj〉.
Examples include • → • and • ⇒ •. The former we don’t know how to characterize; the latter corresponds
to Seiberg–Witten theory.

The obvious question is: What is this all useful for? Why isn’t any random positive-integral linear
combination going to give a BPS particle? And one we have this basis, how can we tell which γ =

∑2r
i=1 ni ·γi

going to give a particle?

1.3 Quiver representation theory

To each γ, we can assign the following representation of our quiver: we assign Cni to the node γi, and we
assign to-be-determined linear maps Baij : Cni → Cnj . In fact, we will be interested in the moduli space of
possible {Baij}i,j . Let us denote this representation as γR.

Note that if we have some γS =
∑2r
i=1mi · γi with mi ≤ ni (and not all equalities, so γS 6= γR), then we

get a subrepresentation. These satisfy

Cni
Baij- Cnj

Cmi

6

baij

- Cmj .

6

We have the following notion of stability (due to Douglas, Fiol, and Romelsberger in 2000). We say that
a representation γR is stable if for every subrepresentation γS , argZ(γS) < argZ(γR). (Note that given a
representation, we can forget the data of the linear maps and obtain an element of Γ; this gives us a notion
of the central charge of a representation.)

And now, we can say what we demand of our Baij . We define our moduli space to be

M = {{Bij : Cni → Cnj}i,j : γR is a stable representation}/
2r∏
i=1

GL(ni,C).

Example 1. Let us take the “A2 quiver” • → •, which gives rise to Argyres–Douglas theory. Write γ1 for
the source and γ2 for the target. Then, take for example γ = γ1 + γ2. This is asking us for a single map
B : C → C, i.e. B = M1(C) ∼= C. To ask when this might be stable, let’s imagine we’ve fixed a central
charge Z, so e.g. for γR to be stable say argZ(γ1) < argZ(γ1 + γ2) < argZ(γ2), so we have to consider γ1.
Then, stability requires that the diagram

C B - C
6

C
0
- C

6

to commute, which of course forces B = 0.

On the other hand, if we had argZ(γ2) < argZ(γ1+γ2) < argZ(γ1, then we’d see that the representation
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corresponding to γ2 would require the commutativity of the diagram

C B - C

0

6

- C,

6

and this can always be made to commute.

Thus, the moduli space is
Mγ = {C∗}/(GL1(C)×GL1(C)) = pt

(or perhaps really BGL1(C)) when argZ(γ2) < argZ(γ1), and the moduli space is

Mγ = ∅

when argZ(γ1) < argZ(γ2).

This is an example of wall crossing. This phenomenon will appear as soon as the ordering of the phases
switches around.

1.4 Computing spectra

The example we looked at was relatively easy, but even the quiver • ⇒ • becomes much more difficult; even
for slightly larger quivers the computations become unmanageable. However, in certain situations there is a
shortcut, which we explain now.

Recall that we chose half of the objects (those whose central charge lives in the upper half-plane (UHP))
more or less at random. In particular, since everything is in the Z-span of the generators, these form some
cone in which all the central charges live.

So but now, suppose we change the half-plane, so much that (let’s say) Z(γ1) leaves the UHP. Then of
course Z(−γ1) enters the UHP. But of course, this changes our decompositions of objects by basis elements.
The key insight here is that this is reflected on the quiver side via what we’ll call a quiver mutation. This is
obtained by associating γi 7→ γi + 〈γ1, γi〉 · γ1 whenever 〈γ1, γi〉 ≥ 0, and keeping γi fixed otherwise.

Example 2. Let’s go back to the quiver • → •. Say argZ(γ2) < argZ(γ1). If we rotate so that Z(γ1) just
barely leaves the left side of the UHP, then we change our basis to {−γ1, γ2 + γ1}. When we compute the
arrows for this new basis, we get the quiver • ← •. (Of course, now that γ2 + γ1 is a basis element, we get
for free that it’s stable.) Continuing to rotate gives us the quiver γ2 → (−γ1−γ2), and then (−γ2)← (−γ1);
by now we’ve rotated by 180◦.

Note that in the previous example, every stable object eventually appeared as a node of the quiver. This
is only true for certain types of quivers and certain types of geometries, but when it works out it’s extremely
useful.

Example 3. Let’s now turn to the quiver • ⇒ •. This one also has two chambers in the moduli space. Let’s
skip past the quiver representation theory and just run the quiver mutations.

Suppose we have argZ(γ2) < argZ(γ1). Then, after γ1 ⇒ γ2 we get (−γ1)⇐ (γ2 + 2γ1), etc. This ends
up generating an infinite sequence of nodes, which will all have the form (n+1)·γ1+n·γ2 for n ∈ N. However,
these accumulate towards just being n · (γ1 + γ2) in the limit n → ∞. It turns out that even if we rotated
in the opposite way, we’d still get the same ray on which they accumulate (instead via n · γ1 + (n+ 1) · γ2).
It’s not an accident that this is the “problem” object that we were considering earlier.

Studying the representation theory for the element γ = γ1 + γ2, one obtains the moduli space P1.
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On the other hand, suppose argZ(γ1) < argZ(γ2). Then we start with γ1 ⇒ γ2, and then get γ1 ⇐ (−γ2),
and then get (−γ1)⇒ (−γ2). In this case, things simply repeat instead.

This theory corresponds to a 4-dimensional, N = 2, SU(2)-gauged theory, called Seiberg–Witten theory.
This comes from SU(2) → U(1). This corresponds to symmetry-breaking. Any charge in U(1) is called
electric. From the Lagrangian perspective, there’s some weird stuff going on where we get magnetic charges
“without having put them there”. Here the moduli space is U(1), and in this special case u becomes a local
coordinate on the moduli space. In terms of the gauge theory, u is parametrizing different “vacua” of the
theory.

What Seiberg–Witten began by asking is: What is an exact function τ(u) such that we have Im(τ(u)) ·
F ∧ ?F as our whatever-the-hell physicsy thing? It turns out that τ has to be holomorphic. It turns out
that we can’t have a τ which is both holomorphic and crosses into the UHP, so we must have singularities.
The strike of genius was interpreting physically what these singularities should mean; the interpretation is
that the BPS particles become massless, and we call these things monopoles.

2 9/19-2013 – Back to basics: abelian categories, quiver repre-
sentation theory, and also maybe abelian categories admitting
stability conditions

2.1 Abelian categories

Definition 1. Let C be a category enriched over abelian groups. We say that C is additive if:

(0) C has a zero object (i.e. an object which is both initial and terminal), and

(1) C has finite products.

Exercise 1. If C is additive, then:

(2) C has finite coproducts, and

(3) these coincide (up to natural isomorphism) with finite products.

Exercise 2. If a category C satisfies properties (0)-(3), then it is naturally enriched over abelian monoids.
(One must simply demand that these are abelian groups; for instance, the category of abelian monoids itself
satisfies properties (0)-(3) but is only enriched over itself.)

Definition 2. An additive category C is called abelian if:

(4) for any map A
f−→ B, the kernel

ker(f) := lim(0→ B
f←− A)

and the cokernel

coker(f) := colim(0← A
f−→ B)

both exist, and

(5) the natural map

coim(f) := coker(ker(f)→ A)→ ker(B → coker(f)) =: im(f)

(from the coimage to the image) is an isomorphism.
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Exercise 3. • The canonical map

ker(f)
k−→ A

is a monomorphism (i.e. k ◦ g = k ◦ h⇒ g = h).

• The canonical map
B

c−→ coker(f)

is an epimorphism (i.e. g ◦ x = h ◦ c⇒ g = h).

Example 4. Here is an example of property (5). By the universal property of coker(k), i.e. the fact that
the diagram

ker(f)
k - A

0
?

- coker(k)
?

is a pushout, the map A
f−→ B induces a unique map coker(k)→ B making the triangle

A

coker(k)
?

- B

f

-

commute. But c ◦ f = 0, so coker(k)→ B → coker(f) is zero.

Now that we have notions of kernels and cokernels, we can make the following general definition.

Definition 3. A short exact sequence in C is a sequence of composable morphisms

0
f0−→ A

f1−→ B
f2−→ C

f3−→ 0

such that ker(fi+1) ∼= coker(fi) for all i.

Definition 4. The Grothendieck group of C, denoted K0(C) is the abelian group generated by the set of
objects of C, with the relations that the existence of a short exact sequence

0→ A→ B → C → 0

implies that [A] + [C] = [B].

Exercise 4. 1. Let k be a field. Then K0(Vectk) ∼= 0 and K0(Vectf.d.k ) ∼= Z.

2. Let R be a P.I.D. Show that the same result holds.

3. Using the previous part, show that Abf.g. doesn’t admit a stability condition.

4. Compare K0(Abfin) with K0(Abf.g.).
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Proof. For (1a), we use Eilenberg’s swindle: V ⊕ (
⊕

N V ) ∼=
⊕

N V . Thus [V ] = 0 ∈ K0(Vectk).

For (1b), we define dim : ob Vect
f.d.
k → Z; since we can form any short exact sequence with finite-

dimensional vector spaces of the appropriate dimensions (i.e. 0 → k⊕m → k⊕(m+n) → k⊕n → 0) and all
short exact sequences split, we obtain the result.

For (2), we use the same proof as for (1b), using the rank function: for k the fraction field of R and
M ∈ ModR, we define rk M = dimk(M ⊗R k).

For (3), we see that [Z/nZ] = 0 ∈ K0(Abf.g.), which contradicts the requirement that the central charge
of all non-(isomorphic-to-)0 objects is nonzero in C.

2.2 Quiver representation theory

Definition 5. A quiver Q is a 1-dimensional semisimplicial set, i.e. the data of:

• two sets Q0 and Q1, and

• two maps s, t : Q1 → Q0 (standing for source and target).

We think of Q0 as the set of vertices and Q1 as the set of arrows; together these form a directed graph.

In this class, both Q0 and Q1 will always be finite.

Let’s fix a base field k once and for all. (This will almost always be over C, or at least some field of
characteristic zero.)

Definition 6. A representation of a quiver Q is an assignment of a vector space Vi to each element i ∈ Q0

and a linear map fα : Vs(α) → Vt(α) for every morphism α ∈ Q1.

Definition 7. Given two representations ({Vi}, {fα}) and ({V ′i }, f ′α}), a morphism from the first to the
second is a collection of maps gi : Vi → V ′i for each i ∈ Q0 such that for all α ∈ Q1, the diagram

Vi
fα - Vj

V ′i

gi

?

f ′
α

- V ′j

gj

?

commutes.

Example 5. Let Q be the quiver with one vertex and one arrow. Then a representation of Q is precisely a
choice of a vector space V ∈ Vect and an endomorphism f ∈ End(V ).

Definition 8. A path in Q is an element

(αn, . . . , α1) ∈ Q1 ×Q0 Q1 ×Q0 · · · ×Q0 Q1

of the n-fold fiber product over the source map on one side and the target map on the other; we take the
convention that t(αi) = s(αi+1). Thus we should think of this as

• α1−→ · · · αn−−→ •.

We call the number n the length of the path. By convention, a path of length 0 is a choice of vertex. (This
follows from the definition, since the fiber product of zero copies of Q1 over Q0 is just Q0.) We’ll write the
empty path at vertex i as ei.
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Definition 9. Let (kQ)l be the k-vector space spanned by the paths of length l. These assemble into the
path algebra, denoted kQ, which is the free associative algebra generated by Q0 ∪Q1, subject to the relation
that “multiplication is concatenation of paths”:

• e2i = ei for all i ∈ Q0;

• eiej = 0 if i 6= j;

• αei = α if s(α) = i;

• ejα = α if t(α) = j;

• βα = 0 if s(β) 6= t(α).

(Our notation is that of composition of functions: the path on the right is the one that happens first.)

Remark 2. kQ is unital, with identity element
∑
i∈Q0

ei. (Note that this assumes Q0 is finite!) Note that
we’d have a distinct unit element if we had taken the free unital associative algebra in the definition.

Remark 3. As a vector space, kQ ∼=
⊕

l≥0(kQ)l.

Note that there is a natural equivalence of categories Rep(Q) ' kQ-mod (left modules, by our conventions).

Proposition 1. If Q is acyclic (i.e. has no oriented cycles), then Repf.d.(Q) ' kQ-modf.g..

Exercise 5. Why does this fail if Q has oriented cycles?

Proof of proposition. Say ({Vi}, {fα}) is a finite-dimensional Q-representation. Let M =
⊕

i∈Q0
Vi, with a

left action of kQ determined by the following:

ei ·m =

{
m m ∈ Vi
0 m ∈ Vj for j 6= i

and

α ·m =

{
fαm m ∈ Vs(α)
0 m ∈ Vj for j 6= s(α).

(Of course, we extend this to all of M by linearity.)

Conversely, given a left kQ-module M , we set Vi = ei · M , and for all paths α of length 1, we set
fαm = α ·m for all m ∈ Vs(α).

Definition 10. The fundamental quiver representation of a quiver Q is equivalent to kQ considered as a
left kQ-module.

Exercise 6. For the following quivers Q, determine the fundamental quiver representation.

1. The quiver with two vertices and a single arrow between them.

2. The quiver with two vertices and two parallel arrows between them.

3. The quiver with one vertex and one arrow.

4. The quiver with two vertices and two arrows between them going in opposite directions.

Next time, we’ll show that any quiver (acyclic or not) has an abelian category of representations which
admits Bridgeland stability conditions.
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