BRIDGELAND STABILITY
HIRO LEE TANAKA
LECTURE 6

Fall 2013, Harvard University
Notes taken by Lukas Brantner

After having rushed through many exciting connections with physics and having
made several unjustified assertions, we will now slow down and be more rigorous.

1. CATEGORICAL BACKGROUND

We start by recalling several basic definitions from category theory - we will
ignore set-theoretic issues.
Definition 1.

e Anobject 0 in a category C is called zero object if there is a unique morphism
from and to any other object in C.
e A product of two objects X7, X5 € ob( is a diagram

X7 & X x Xo 25 X,
such that for any other diagram
XLy 5 x,

there is a unique f : Y — X; x Xo with m; 0 f = f; for i = 1,2. Like all
limits, products are, if they exist, unique up to unique isomorphism.
e Coproducts are defined dually.

One defines pullbacks and pushouts along similar lines. If a category has a zero
object, it is said to be pointed and we can give diagrammatic definitions of several
well-known concepts from algebra:

Definition 2. Let C be a pointed category and f : A — B a morphism in C.
The kernel of f is, if it exists, given by the following pullback diagram:

Ker(f)_kler% A

L7

0 —B

The cokernel of f is, if it exists, the following pushout diagram:

f

A——>B

| [

0 —> Coker(f)
1
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Definition 3. We say that a category C is enriched over abelian groups if all its
Hom-sets home(X,Y) are endowed with the structure of abelian groups in a way
which make the composition maps

home(X,Y) x home(Y,Z) — home(X, Z)
bilinear.

Definition 4. Such a category C which is enriched over abelian groups is said to
be additive if it has a zero object and finite products.
Exercise 5. Show that if the category C is additive, then:

(1) it has finite coproducts
(2) its binary products and coproducts are naturally isomorphic - they are there-
fore called biproducts

We finally arrive at the following central notion:

Definition 6. An additive category C is called abelian if

e it has kernels and cokernels.
e for every morphism f, the canonical arrow

Coker (Ker(f) Ferlh), A> — Ker <B cokertf), Coker(f))

is an isomorphism.
The last condition ensures that we have a ”well-behaved” notion of an image:

Definition 7. We define the image of a map f in an abelian category as
im(f) = Ker(coker(f))

Exercise 8. For any morphism f:

e the map Ker(f) ke 4 s a monomorphism (i.e. has left cancellation)

coker(f)

e the map B Coker(f) is an epimorphism (i.e. has right cancella-

tion).

Let us now construct the canonical map used in the definition of an abelian
category explicitely. We have a pullback diagram

ki
Ker(f) erlf A
_
| /
0 ——>B
and a pushout square
f% B

. icoker( )
——> Coker(f)

E
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By the universal property of coker(ker(f)), we obtain a unique map:

Ker(f) % A

i coker(ker( f))i / |

0 ———> Coker(ker(f)) —> B

It is clear that
Coker(ker(f)) — B — Coker(f)

is zero. By the universal property of Ker(coker(f)), this gives a unique map

Coker(ker(f)) —> Ker(coker(f))

2. THE GROTHENDIECK GROUP
We fix an abelian category C.
Definition 9. A short exact sequence is a sequence of maps
RN/ RELNY JECNYGRELNY)
such that ker(f;+1) = im(f;) for all .

Definition 10. The Grothendieck group of C is the abelian group Ky(C) generated
by obC modulo the relation

[A]+[C] = [B]
whenever there is some short exact sequences 0 - A — B — C — 0.

We have the following elementary results:

Proposition 11.

(1) For any field k, we have:
a) Ko(Vect) =0
b) Ko(Vectl ™) =17
(2) For any principal ideal domain R we have Ko(Modgg') >7
(8) The category AbT9- does not admit a Bridgeland stability condition.

Proof.
(1) a): This is known as the Eilenberg swindle trick. For any vector space V, we
can chose an isomorphism

ve [PV ] =PV

n>1 n>1

which implies that [V] = 0 in the Grothendieck group Ko(Vecty).
(1) b): The (virtual) dimension function

dim: ZobC — Z
Vi—dimV

out of the free abelian groups spanned by the objects of C is surjective and its
kernel is spanned by all combinations [A] 4 [C] — [B] for which there is a short exact
sequence 0 - A —- B — C — 0.
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(2): This is proven in the same way as (1) b) by using rank instead of dimension.
(3): The short exact sequence

02257 7Z/nZ—0

shows that [Z/nZ] = 0 € K, which implies Z(Z/nZ) = 0 for any stability condition.
This contradicts the axioms. g

Exercise 12. Compute the Grothendieck group Ko(Abf™).

3. QUIVERS

Definition 13. A quiver @ is just a directed multigraph. More formally, it is
determined by a pair of sets (Qo, Q1) (the vertices and the arrows) and a pair of
maps $,t: Q1 — Qo (the source and the target map).

In this class, the sets Qg, @1 will usually be assumed to be finite.

Ezample 14. Take vertices Qo = {1,2} and edges Q1 = {e, f, g, h} with
a source function s given as:

e—1 f—=1

g—1 h— 2
and a target function ¢ defined by:

e—1 f—=2

g— 2 h— 2

Definition 15. A representation of a quiver () is consists of the data of
e vector spaces V; for all i € Qg
e linear maps V(o) — Vi(a) for all a € Q.

Definition 16. A morphism between two representations ({V;}, {fo}) and ({W;}, {ga})
of a quiver @ is a collection of linear maps {¢; : V; — W;} such that

Ja

Vi

Qbi\L i%‘
w; s w;
commutes for all a with s(a) =4, t(a) = j.
Definition 17. A path of length n in a quiver ) is an element
(qtn,.oy1) € Q1 XQq - XQp @1

Note that paths of length 0 correspond to vertices, and we will write e; for the
path corresponding to the vertex i € Q.
Let (kQ); be the vector space spanned by all paths of length [ in a quiver Q.

Definition 18. The path algebra kQ is the free nonunital associative algebra gen-
erated by Qg U Q1 such that:

e cZ=¢; for all i € Qp and e;e; = 0 for i # j.

o ag; =aif s(a) =i and eja=¢; if t(a) = j

e fa=0if s(B) # t(a)
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Remark 19. In the case where Qg finite, the algebra kQ = @(k@)l is actually
1>0

unital with unit 1 = Z ;.
1€Qo
Proposition 20. There is an equivalence of categories
Rep(Q) = LMOde

between the representations of a quiver and the left modules over its path-algebra.

Proof. If ({Vi},{fa}) is a representation of W, we define a left module

M:@Vi

q€Qo
whose kQ@-action is given by
- m ifmeV _ fa(m) ifmeVs(a)
cim = { 0 else am = { 0 else

Conversely given a left module M over the path-algebra of @, set V; = ¢e; - M. If
« is an edge of our quiver, it is also a path of length 1. This allows us to define
Ja(m) = a-m € Vi) for all m € V4. O

Exercise 21. If Q is acyclic, then Rep/ % (Q) = LMod,J:g‘.

Exercise 22. Describe the quiver representation corresponding to kQ, considered
as a kQ—module, in each of the following cases:

(1)

(2)

(3)

(4)
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