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1. Quivers and path algebras

Let us recall what we did lat time.

Definition 1.1. A quiver Q is

Q = (Q0, Q1, s, t : Q1 → Q0)

where
(1) Q0 is the set of vertices,
(2) Q1 is the set of edges,
(3) s, t : Q1 → Q0 sends an edge t to its source s(e) and target t(e).

Definition 1.2. To a quiver Q, we define the path algebra kQ as the free (not
necessarily unital) associative algebra generated by paths of lengths 0 and 1, modulo
concatenation of paths.

Let Repfd(Q) be the category of finite dimensional representations of Q, and
kQfd-mod is the category of finite dimensional modules over kQ.

Proposition 1.3. There is an equivalence of categories between Repfd(Q) and
kQfd-mod.

Proof. Given a moduleM , we produce a quiver representation by letting Vi = eiM ,
where ei is the path of length zero at the vertex i. Note that

M = ⊕i∈Q0Vi

The action of the length one paths produces linear maps fe : Vs(e) → Vt(e) for each
edge e. The data Vi, fe is representation of Q.

Conversely, given a Q-rep (Vi, fα), we let

M = ⊕i∈Q0
Vi

and define the action by length one paths correspond to the linear maps fα. �

To each quiver Q, there is a canonical representation of the path algebra: the
regular one. That is, view kQ as a kQ-module. It is fun to describe it in terms of
quiver representations.

Exercise 1. Describe the regular representation of the following quivers:
(a) v0• •v1//
(b) v0• •v1++ 33
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(c) v0• •v1++kk

(d) v0• gg

Solution 1. (a) ke0• •ke1 ⊕ kα// where the map sends e0 to α.
(b) ke0• •ke1 ⊕ kα⊕ kβ

..
00 and the top map sends e0 to α, and the bottom

sends e0 to β.
(c) V0• •V1

++
kk where

V0 = ke0 ⊕ k(βα)⊕ k(βαβα)⊕ . . .
V1 = ke1 ⊕ kα⊕ kαβα⊕ . . .

and the top map is “multiplication by α”, and the bottom is “multiplicaiton by
β”.

(d) V0• kk where V0 = k[α] and the map is multiplication by α.

These examples suggest that if the quiver has a cycle, then the regular represen-
tation is infinite dimensional. We will show this later.

Remark 1.4. One can ask if the regular representation is nevertheless a colimit
of finite dimensional representations (even if the quiver has cycles). We haven’t
seen a counterexample, but the translation to modules indicates that the answer is
expected to be no. In general modules are colimits of finitely generated modules,
but not of finite modules.

2. Simple objects, Jordan-Holder filtrations and finite length
categories

Definition 2.1. C abelian category. An object E is simple if any monomorphism
i : E′ → E is either the inclusion of the zero object, or an isomorphism.

Example 2.2. For any Q, let S(i) be the representation w/ k at the vertex i ∈ Q0.
It is simple! If the quiver is acyclic, these are all the simple ones.

Example 2.3. For Q = • •**jj , the cycle with identities is simple.

Proposition 2.4. Let V be a simple representation of a quiver Q. Assume Q0 is
finite, or V is finite dimensional. If Q has no cycles, then every simple represen-
tation is S(i) for some vertex i ∈ Q0.

Proof. If Q has no cycles, Q0 is a poset (set i ≥ j if there is a path from i to j).
Given and representation V , let i be maximal such that Vi 6= 0. Then S(i) is a
subrepresentation. �

One of the reasons to care about simple objects is that they generate the Grothedieck
group. More on that later.

Definition 2.5. Let C be an abelian category, and E ∈ obC. A Jordan-Holder
filtration for E is a finite sequence

0 = E0 ⊂ E1 ⊂ . . . ⊂ En = E

such that Ei+1/Ei is simple.
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Remark 2.6. Unlike Harder-Narasimhan filtration, J-H filtration is not unique. But
the simple factors

Ei+1/Ei

are unique up to re-ordering.

On the other hand, in JH-filtration the quotients are simple, which implies stable,
while in HN-filtration the quotients are only semistable.

Definition 2.7. An abelian category C is called finite length if every object admits
a J-H filtration.

Proposition 2.8. Given any associative algebra A, the category Afd-mod of finite
dimensional A modules is finite length.

Proof. Given E, it is simple or not. If it is simple, we are done. Otherwise, choose a
simple sub object S0 = E0. This exists because if every submodule had a non-zero
submodule, we would get an infinite descending sequence, which contradicts finite
length.

Let

0→ S0 → E → E/S0 → 0

By induction on the length of E/S0, we can assume that it has a J-H filtration:

0 ⊂ S̃1 ⊂ . . . ⊂ S̃n ⊂ E/S0

We now pull this filtration back to E. That is, let

Si = S̃i ⊗E/S0
E

We get the desired JH-filtration.

0 ⊂ S0 ⊂ S1 ⊂ . . . ⊂ Sn ⊂ E

�

In particular RepfdQ is finite length.
If C is finite-length, then K0(C) is spanned by simple objects, essentially because

we can use the filtration to build Ei+1 as an extension of Ei by Ei+1/Ei.

Proposition 2.9. If C is finite length, then

K0(C) = Zsimp(C)

where simp(C) is set of isomorphisms classes of simple objects.

Proof. Consider the map

Zsimp(C) → K0(C)

sending an element Zsimp(C) to the corresponding linear combination the classes of
the simple objects.

The inverse map sends [E] to the sum of the factors in its J-H filtration. �
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3. Constructing Bridgeland stability conditions

Recall that a Bridgeland stability condition on an abelian category C is a map

Z : obC → C
such that

(0) image(Z) ⊂ H̄− R>0

(1) Z(E) = 0 =⇒ E = 0
(2) Z descends to a map Z : K0(C)→ C of abelian groups.
(3) Every E has a H-N filtration, i.e.,

0 = E0 ⊂ E1 ⊂ . . . ⊂ En = E

such that
• Ei+1/Ei is Z-semistable
• ϕ(Ei+1/Ei) > ϕ(Ei+2/Ei+1), where ϕ = argZ is the phase map.

Suppose now we are given an abelian category C and a map Z : obC → C. We
want to find easy to check conditions to tell if (C, Z) is a stability condition.

Definition 3.1. For E ∈ obC, let HZ(E) be the convex hull of {Z(A)|A ⊂ E}, (the
zero object included).

�

�

Figure 1. H(E) ∩ {reiπθ}

Theorem 3.2. Let C be abelian, suppose we have Z satisfying (0), (1) and (2). And
(?) For any E ∈ obC, the region

H(E) ∩ {reiπθ|θ ∈ [ϕ(E), 1]}
is compact, and the boundary is a finite polygon.

Then Z satisfies (3).
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Proof. Fix E. Consider the set of extremal points of H(E) ∩ {reiπθ|θ ∈ [ϕ(E), 1]},
and order them as v1, v2, . . . , vn−1 such that

arg(vi) > arg(vi+1)

We let v0 = 0, and vn = Z(E). As in the following diagram:

���

����

��

��

����

��

Figure 2. Numbering of vertices

Lemma 3.3. Fix Ai ⊂ E such that Z(Ai) = vi. Then
(a) Ai ⊂ Ai+1

(b) arg(Ai+2/Ai+1) < arg(Ai+1/Ai)
(c) Ai+1/Ai is semistable.

This will be our H-N filtration, and complete he proof of Theorem 3.2. �

Proof of Lemma 3.3. Consider Bi = Ai ∩ Ai+1, and Ci = Ai + Ai+1 (that is, the
pullback over E, and the image of the direct sum). To prove part a, we will show
Bi = Ai (and Ci = Ai+1).

Looking at the sequences:

0→ Bi → Ai → Ai/Bi → 0(1)
0→ Ai+1 → Ci → Ci/Ai+1 → 0(2)

We get

im(Z(Bi)) ≤ im(Z(Ai))(3)
im(Z(Ci)) ≥ im(Z(Ai+1))(4)

and equalities holds only if Z(Bi) = Z(Ai) and Z(Ci) = Z(Ai+1). Looking back at
the sequences (1), we see that these equalities in central charge imply Bi = Ai and
Ci = Ai+1.
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Graphically, this limits the region in the complex plane that the Z(Bi), Z(Ci)
can lie:
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Figure 3. The regions in which Z(Bi) and Z(Ci) may lie.

Now, by the short exact sequence

0→ Bi → Ai ⊕Ai+1 → Ci → 0

we get
Z(Bi) + Z(Ai+1) = Z(Ai) + Z(Ci)

Taking imaginary parts, and comparing with the inequalities 3, we get that
equality must actually hold! Hence, Bi = Ai and Ci = Ai+1.

For part b, we note that the (tangent of the) phase of Ai+1/Ai is the slope of the
segment connecting Z(Ai) and Z(Ai+1). As the regionH is convex, this corresponds
to consecutive sides having decreasing slopes. We can see this graphically too as in
Figure 4.

For part c, assume that there exists A such that

ϕ(A) > ϕ(Ai+1/Ai) and A ⊂ Ai+1/Ai

Look at the fibered square:

Â //

��

Ai+1

��
A // Ai+1/Ai

which implies
Z(Â) + Z(Ai+1/Ai) = Z(Ai+1) + Z(A)
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Figure 4. Decreasing slopes

which gives
Z(Â) = Z(A) + Z(Ai)

As ϕ(A) > ϕ(Ai+1/Ai), we conclude that Z(Â) 6∈ H(E). However, Â ⊂ Ai+1 ⊂ E,
hence by definition Z(Â) 6∈ H(E). Contradiction! �
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