
BRIDGELAND STABILITY CONDITIONS
LECTURE 8

Throughout this lecture, C will denote an abelian category.

1. Artinian and Noetherian categories

Definition 1.1. An object E ∈ obC is Artinian if any descending chain

. . . ⊂ Ei+1 ⊂ Ei ⊂ . . . ⊂ E0 = E

stabilizes.
An object E is Noetherian if any ascending chain

E0 ⊂ E1 ⊂ E2 ⊂ . . . , where Ei ⊂ E for any i

stabilizes.

Remark 1.2. E Noetherian is equivalent to every sequence of epimorphisms

E → D1 → D2 → . . .

stabilizes.

Definition 1.3. A category C is Artinian (Noetherian) if every object is.

Proposition 1.4. C is finite length if and only if C is Artinian and Noetherian.

Proof. This is similar to what we did last lecture. If E is Artinian, then we can
find a simple object S0 ⊂ E. Define D0 = E/S0. If D0 is not simple, we find
a simple subject S1 ⊂ D0. Define D1 = D0/S1. And so on. We get a sequence
Di = Di−1/Si, which stabilizes since C is Noetherian.

Let fi : E → Di. Then

ker f0 ⊂ ker f1 ⊂ . . . ⊂ kerfn ⊂ E

is a J-H filtration for E.
The other direction is left as an exercise. �

2. Stability conditions

Recall the definition of Bridgeland stability conditions:
(0) image(Z) ⊂ H̄− R>0

(1) Z(E) = 0 =⇒ E = 0
(2) Z descends to K0(C)
(3) HN filtration

Theorem 2.1. Let C be an abelian category. Suppose we have Z satisfying (0), (1)
and (2). And

(?1) There is no infinite sequence of monomorphisms

. . . Ei+1 ⊂ . . . ⊂ E0 = E

such that ϕ(Ej+1) > ϕ(Ej).
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(?2) And, there is no infinite sequence of quotients

E → D1 → D2 → . . .

with ϕ(Dj+1) < ϕ(Dj)

Then Z satisfies (3).

A situation in which these constrained infinite chains stabilize is when every
infinite chain stabilizes. We get the important corollary.

Corollary 2.2. If C is finite length, every Z satisfying (0)-(2) also satisfies (3).

In the proof of Theorem 2.1, the following notion will play a key role.

Definition 2.3. Given an object E ∈ obC, and a central charge Z, a maximally
destabilizing quotient (mdq) of E is a quotient E � B such that for any epimor-
phism E � B′,

(1) ϕ(B′) ≥ ϕ(B), and
(2) ϕ(B′) = ϕ(B) only if there exists a factorization

E // //

����

B

~~
B′

Remark 2.4. In class there was a discussion whether if a mdq exists, then it is
unique. In the case of C being an abelian category (which is our case, anyways),
this is true.

To see that, we can reduce to the case of R-modules, for some ring R. Then we
only have one option for the map f : B → B′. Given an element b ∈ B, lift it to E,
and then map it down to B′. If this map f is well defined, then it is unique. It will
be well defined if all points in a fiber of E → B map down to the same element in
B′.

In any case, we will not use this remark below.

Example 2.5. If E is semi-stable, the identity map id : E → E is mdq.

Remark 2.6. If E � B is a mdq, then B is semistable (since any quotient of B is
also a quotient of E).

Remark 2.7. If E � B is a mdq, then ϕ(B) ≤ ϕ(E), since we could take id : E →
E = B′.

Remark 2.8. In the definition, we can take B′ to be semistable, by the properties
(?) on Theorem 2.1.

Remark 2.9. Pictorially, Z(B) is the quotient of maximal length among the ones
with minimal slope.

Lemma 2.10. For any E ∈ obC, under hypothesis of theorem 1, mdqs exist.

Proof. Let E be an object in C. If E is semistable, we are done.
If E is not semistable, there exists A such that

0→ A→ E → E′ → 0

with ϕ(A) > ϕ(E). Using the chain condition, we may take A to be semistable.
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Claim 2.11. If E′ � B is a mdq for E′, then the composition

E � E′ � B

is an mdq for E.

Using this claim, we finish the proof of our lemma. We can construct a sequence
of epimorphisms

E � E′ � E′′ � . . .

This has to stabilize by property (?). The last term will be the mdq for E. �

Proof of Claim 2.11. Assume we have

E � B′ and ϕ(B′) ≤ ϕ(B)

We want to show that ϕ(B′) = ϕ(B) and that there is a map B → B′ making the
diagram below commute.

E //

��

B

~~
B′

Let us draw a diagram of the central charges.

Figure 1. Central charges

We see that ϕ(B′) < ϕ(A). We can assume B′ to be semi stable by remark 2.8.
Since B′, A are both s.s.,

Hom(A,B′) = 0

which implies that the composition A→ E → B′ is the zero morphism.

A

��

// E

����

// E′

~~~~
0 // B′

By the universal property of the cokernel E′, there is a unique E′ → B′ factoring
E → B.
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Since B is a mdq for E′, we get ϕ(B′) ≥ ϕ(B). Hence ϕ(B′) = ϕ(B). This in
turn implies that there is a map B → B′ which makes the diagram below commute,
as we wanted to show.

E //

  

E′ //

��

B

~~
B′

�

Proof of Theorem 2.1. Fix an object E. We want to produce a HN-filtration for it.
If E is semistable, we are done. Otherwise, there exists

0→ En−1 → En → Bn → 0

where En = E, and En � Bn being a mdq, Bn semistable and

ϕ(En−1) > ϕ(En)

Fix En−1 � Bn−1 an mdq. We can construct the following diagram:

0

��

0

��
0 // K

��

// En−1 //

��

Bn−1

��

// 0

0 // K // En

��

// Q //

��

0

Bn

��

// Bn

��
0 0

We conclude that there is a sequence

0→ Bn−1 → Q→ Bn → 0

Lemma 2.12. ϕ(Bn−1) > ϕ(Bn)

Proof. It is enough to prove ϕ(Q) > ϕ(Bn). Since Bn is mdq, we get ϕ(Q) ≥ ϕ(Bn).
If ϕ(Q) = ϕ(Bn), then they lie on the same ray, and Bn mdq implies

|Z(Bn)| ≥ |Z(Q)|

On the other hand, the SES implies |Z(Q)| ≥ |Z(Bn)|. Therefore, equality holds,
and Z(Bn−1) = 0, which means Bn−1 = 0. Contradiction! �

Now we produce an infinite descending chain

. . . ⊂ En−2 = K ⊂ En−1 ⊂ En

which stabilizes by assumption (?). This is our HN-filtration. �
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3. An example

We finish this lecture with an example that shows that there are stability con-
ditions not detected by any of the two criteria we have seen in the past couple of
lectures.

Example 3.1. Take
Cc = Coh(P1)op

with the standard Z:

Z :obC → C
Z(E) =− deg(E) + irk(E)

does not satisfy the assumptions of the theorems, but is an stability condition.
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