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Our goal is to prove the following theorem:

Theorem. Let X be a smooth projective curve (over the complex numbers).

Then the action of G̃L+(2,R) on the moduli space Stab(X) of numerical
stability conditions on X is free and transitive.

This theorem is due to Bridgeland [1] for the case of an elliptic curve,
and to Macr̀ı [2] for all positive genera. Before jumping in to the proof,

we’ll define the G̃L+(2,R) action and the numerical Grothendieck group of
DbCoh(X).

The G̃L+(2,R) action on stability conditions

To describe G̃L+(2,R), let’s first look at the homotopy type of GL+(2,R).
Given any non-singular 2 × 2 matrix, we can perform Gram-Schmidt or-
thonormalization on it to get an orthogonal matrix, and furthermore, looking
at the formulas for the Gram-Schmidt process, we see we can “do it gradu-

ally”, obtaining a deformation retraction of G̃L+(2,R) onto SO(2,R). Now,
SO(2,R) just consists of rotations, which are parametrized by an angle in
S1, so GL+(2,R) is homotopy equivalent to S1, and since the Gram-Schmidt
process keeps the direction of the first column of the matrix, this angle is
really given by the phase of M applied to the unit vector (1, 0). The universal
cover of GL+(2,R) will be a Z-cover of GL+(2,R), where we “unwind” that
S1, which we can describe as follows:
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G̃L+(2,R) ∼= {(M, f) : M ∈ GL+(2,R), f : R→ R,
f(x+ 1) = f(x) + 1,∀θ Meiπθ ∈ R+e

iπf(θ)}

(Here we have identified C with R2 in the standard way, to be able to apply
M to eiπθ.) The group operation is given by (M, f)◦(M ′, f ′) = (MM ′, f ◦f ′).
And, as a check, the fiber above a given matrix M consists of all lifts f such
that

R f−−−→ R

eiπt

y yeiπt
S1 M̂−−−→ S1

where M̂v = Mv
|Mv| . There are only a Z’s worth of such lifts, each being

determined by f(0).
Given a stability condition σ = (Z,P) we set (M, f) · σ = (M−1 ◦ Z,P ◦

f). This determines a right action of G̃L+(2,R) on stability conditions that
corresponds to the intuitive notion of “rotating a stability condition” that we
have discussed in the course. Recall, in particular, that rotating a stability
condition a full 2π is supposed to shift the heart by 2.

There is also a left action of the triangulated auto-equivalences of DbCoh(X)
on stability conditions given by α ∈ Aut(DbCoh(X)) acting as α · (Z,P) =

(Z ◦ α−1, α(P)). This action commutes with the G̃L+(2,R) action, and we
will have nothing more to say about it.

The numerical Grothendieck group

The Euler form or Mukai pairing on K0(DbCoh(X)) is defined by the follow-
ing formula:

〈E ,F〉 :=
∑
ı∈Z

(−1)i dim Exti(E ,F).

Given an exact triangle E1 → E2 → E3 we can easily check that 〈E1,F〉−
〈E2,F〉+〈E3,F〉 = 0 by using the long exact sequence relating the Ext∗(Ei,F)
for i = 1, 2, 3. This, with an analogous argument for F , shows that the
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Mukai pairing indeed descends to the Grothendieck group. Notice also that
〈E [n],F〉 = 〈E ,F [n]〉 = (−1)n〈E ,F〉.

Given any pairing we can consider its left and right kernels:

• The left kernel, kerL := {E ∈ DbCoh(X) : for all F , 〈E ,F〉 = 0}, and

• The right kernel, kerR := {F ∈ DbCoh(X) : for all E , 〈E ,F〉 = 0}.

Serre duality, when available, let’s us relate these. Recall that in terms
of a Serre functor S, Serre duality can simply be stated as a natural isomor-
phism Hom(E ,F) ∼= Hom(F , S(E))∨, which by shifting gives an analogous
statement for Ext’s and proves that 〈E ,F〉 = 〈F , S(E)〉. This shows that
the Serre functor gives an isomorphism between the left and right kernels.
In case X is a smooth projective variety of dimension n, the Serre functor is
given by S(E) = E ⊗ ωX [n], where ωX is the sheaf of differential n-forms. In
particular, if ωX ∼= OX , such as for an elliptic curve or a Calabi-Yau variety,
we get that kerL = kerR.

The numerical Grothendieck group, denoted N (X), is defined to be the
quotient K0(DbCoh(X))/ kerL, and a stability condition (Z,P) is said to be
numerical if the central charge Z factors through N (X).

In the case of a smooth projective curve of genus g, we have a simpler
expression for the Mukai pairing. This expression involves the notions of rank
and degree, which we will first define for coherent sheaves and then extend
to homomorphisms on the Grothendieck group of DbCoh(X).

Rank. For a locally free sheaf we know what we want the rank to be: the
rank of a stalk, all of which are free modules of the same rank. Any
coherent sheaf on a smooth projective curve can be written as a direct
sum of a locally free sheaf and a torsion sheaf1 and we can define the
rank to be simply the rank of the locally free part. Alternatively, we
can define the rank to be the dimension of the stalk at the generic
point ; this definition makes it clear that the degree is additive on short
exact sequences and thus defines a homomorphism K0(DbCoh(X)) →
Z. (Notice that the operations of taking stalks at any point is exact, but

1This can be seen as follows: the classification theorem for finitely generated modules
over a PID tells us that any coherent sheaf can be written as a direct sum of a torsion
sheaf and a torsion-free sheaf; moreover, it tells us that the torsion-free part has free stalks
and then Nakayama’s lemma implies said part is locally free. Notice that because of the
reliance on the classification theorem for PIDs, this is really special to curves.
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here we need to use the generic point specifically to avoid the torsion
part of the sheaf.)

Degree. For a line bundle L one can define the degree as follows: given
any rational section σ of the line bundle, the degree of L is the num-
ber of zeros of σ minus the number of poles (both counted with the
appropriate multiplicities); one can show this is independent of the
chosen section σ. For this classical notion of degree, one has the fol-
lowing result, which is a(n easy) version of the Riemann-Roch theo-
rem: degL = χ(L) − χ(OX); where χ(E) =

∑
i(−1)i dimH i(E) is

the Euler characteristic of the sheaf E. Generalizing that last for-
mula, we will define the degree of an arbitrary coherent sheaf to be
degE = χ(E) − (rankE)χ(OX). This is defined as a linear combina-
tion of χ and rank, and is thus additive on short exact sequences, as
required to pass to the Grothendieck group.

I now claim that for the Mukai pairing on a smooth projective curve of
genus g, we have the formula

〈E,F 〉 = − degE rankF + rankE degF − (1− g) rankE rankF.

Indeed, both sides are additive on short exact sequences in each variable
separately and thus descend to bilinear forms on the Grothendieck group.
This means to check they are equal it is enough to check this true for line
bundles, as they generate the Grothendieck group. Even if we merely assume
E is locally free, the identity to check simplifies a lot: since then Exti(E,F )
is just H i(E∨ ⊗ F ), the left-hand side becomes χ(E∨ ⊗ F ), while the right-
hand side, for locally free E reduces to deg(E∨⊗ F )− rank(E∨⊗ F )χ(OX).
So for locally free E the claimed identity reduces to Riemann-Roch.

This formula shows that the morphism N (X)→ Z2 given by the formula
E 7→ (rankE, degE) is an isomorphism: the formula above shows that the
kernel of the Mukai pairing consists precisely of objects E ∈ DbCoh(X) such
that degE = rankE = 0.

The space of numerical stability conditions

Theorem. Let X be a smooth projective curve (over the complex numbers).

Then the action of G̃L+(2,R) on the moduli space Stab(X) of numerical
stability conditions on X is free and transitive.
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Throughout this section, X will always be some fixed smooth projective
curve of positive genus. This is implicitly part of the hypothesis of every
lemma here.

Most of work of proving the theorem will be in proving the following:

Lemma. Line bundles and skyscraper sheaves are stable for any numerical
stability condition σ on DbCoh(X).

This in turn relies on the following result of Gorodentsev, Kuleshov, and
Rudakov [3]:

Lemma. If A→ E → B is a distinguished triangle in DbCoh(X) such that
Ext≤0(A,B) = 0 and E ∈ Coh(X), then we must have A,B ∈ Coh(X) as
well.

Proof. We need the following basic fact about curves: the category Coh(X)
for a smooth projective curve X has homological dimension 1, this means
that Extk(U, V ) = 0 for all k ≥ 2 and all U, V ∈ Coh(X). (It is in fact
true, more generally, that for a smooth projective variety Y of dimension n,
Coh(Y ) has homological dimension n.)

Claim. For any Abelian category A with homological dimension 1, we have
that objects E of the bounded derived category DbA are direct sums of their
homology objects, E ∼=

⊕
i∈ZHi(E).

(In the case A = Coh(X), the object E can be thought of as a chain
complex of coherent sheaves, and the Hi(X) are the cohomology sheaves of
the complex, which one shouldn’t confuse with the sheaf cohomology groups
of E.)

Proof of claim. Recall the two versions of truncation of a complex E =

· · ·Ei di−→ Ei+1 → · · · at degree i:

· · · −−−→ Ei−1 −−−→ ker(di) −−−→ 0 −−−→ 0 −−−→ · · ·y y y y
· · · −−−→ Ei−1 −−−→ Ei −−−→ im(di) −−−→ 0 −−−→ · · ·

Each row has the following properties: (a) it is a subcomplex of E, (b) the
inclusion into E gives an isomorphism on homology up to degree i, (c) its
homology in degrees i + 1 and higher vanishes. The above diagram also
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depicts the inclusion of the top row into the bottom, and this is clearly a
quasi-isomorphism. We will call the object of DbA corresponding to either
row τ≤iE.

Now consider the following short exact sequence of complexes:

· · · −−−→ Ei−2 −−−→ Ei−1 −−−→ im(di−1) −−−→ 0 −−−→ · · ·y y y y
· · · −−−→ Ei−2 −−−→ Ei−1 −−−→ ker(di) −−−→ 0 −−−→ · · ·y y y y
· · · −−−→ 0 −−−→ 0 −−−→ Hi(E) −−−→ 0 −−−→ · · ·

This gives rise to a distinguished triangle τi−1E → τiE → Hi(E)[−i].
Using this we can prove the claim by induction on the number of non-zero

homology objects of a complex E ∈ DbA. Let i be large enough that τiE = E.

Then we have a distinguished triangle τi−1 → E → Hi(E)[−i] f−→ τi−1E[1].
By the induction hypothesis, we have τi−1E ∼=

⊕
j<iHj(E)[−j] and the

morphism f therefore lies in:

HomDbA(Hi(E)[−i],
⊕
j<i

Hj(E)[−j + 1]) =⊕
j<i

HomDbA(Hi(E)[−i],Hj(E)[−j + 1]) =⊕
j<i

HomDbA(Hi(E),Hj(E)[i− j + 1]),

but all of those groups are 0 since i − j + 1 ≥ 2. This means that f must
be 0 showing that the distinguished triangle splits as a direct sum and thus
E ∼=

⊕
j≤iHj(E)[−j].

We’ll use this to establish the part of the lemma that doesn’t use that
the genus is positive:

Claim. If A → E → B is a distinguished triangle in DbCoh(X) such that
Ext<0(A,B) = 0 and E ∈ Coh(X), then each of A and B is concentrated
in two degrees (not the same two degrees, though): A ∼= A0 ⊕ A1[−1] and
B ∼= B0 ⊕B−1[1].
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Proof of claim. By the previous claim we can write A ∼=
⊕

Ai[−i] and B ∼=⊕
Bi[−i]. The long exact sequence on homology induced by the triangle

A → E → B is very simple since E is concentrated in a single degree: for
i 6= 0, 1, we get Ai ∼= Bi−1, and we have an exact sequence

0→ B−1 → A0 → E → B0 → A1 → 0.

If for some i 6= 0, 1 we had Ai 6= 0, then the isomorphism Ai ∼= Bi−1 would
give an element of Hom(Ai[−i], Bi−1[−i]) ∼= Ext−1(Ai[−i], Bi−1[−(i− 1)]) ⊆
Ext−1(A,B), which contradicts the assumptions.

Now we use that in positive genus the canonical bundle ωX has non-
zero sections to conclude the proof of the lemma. Since the statement is
now more than a page behind, I’ll remind you that we have a distinguished
triangle A → E → B with E ∈ DbCoh(X) and Ext≤0(A,B) = 0 and want
to prove that A,B ∈ Coh(X) too. By the above claim, we just need to show
A1 = B−1 = 0. We’ll use the medium length exact sequence from the proof
of the previous claim. To show that B−1 is 0 it is enough to show that the
map B−1 → A0 in the sequence is 0. If it were not 0, twisting it by a section
of ωX would give a non-zero map B−1 → A0⊗ωX and thus, by Serre duality,
we’d have 0 6= Ext1(A0, B−1) ⊆ Ext1(A,B[−1]) = Ext0(A,B), which is a
contradiction. The proof of A1 = 0 is similar.

With this homological algebra out of the way we can now prove the geo-
metric lemma we need, which I’ll restate for convenience:

Lemma. Line bundles and skyscraper sheaves are stable for any numerical
stability condition σ = (Z,P) on DbCoh(X).

Proof. Let’s first prove that line bundles and skyscraper sheaves are semistable.
Let E be either one, and consider its Harder-Narasimhan filtration, let A
be the first semistable factor in it, and form a distinguished triangle A →
E → B. By semistability, we have Ext≤0(A,B) = 0, and the homologi-
cal algebra lemma tells us that A and B are also just sheaves. This means
that the distinguished triangle A → E → B is just a short exact sequence
0 → A → E → B → 0 in Coh(X). In the case E is a skyscraper sheaf this
already forces B = 0, since it has no proper subobjects. If E is a line bundle,
then A must also be a line bundle and the quotient, B, must be a torsion
sheaf. But then, if B 6= 0, we’d have Hom(A,B) 6= 0, too. Therefore B = 0
and E is semistable.
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Now let’s prove that they are even stable. Consider the Abelian category
P(φ(E)) whose simple objects are the σ-stable objects of phase φ(E). If E is
not stable, there will be some stable S ∈ P(φ(E)) such that Hom(S,E) 6= 0.
Now consider the set of subobjects of E all of whose filtration quotients in
the Jordan-Hölder filtration are isomorphic to S, and let A be a maximal
such subobject. Form the short exact sequence 0 → A → E → B → 0. By
maximality of A, B has no subobject isomorphic to S and since S is simple,
Hom(S,B) = 0. Since A is made out of extensions of copies of S, we also
have Hom(A,B) = 0, and we have Ext<0(A,B) = 0 just by semistability. So
by the lemma, we again have A,B ∈ Coh(X). Just as before this shows that
B = 0, which now implies that E ∼= A has all stable factors isomorphic to
S. Therefore, in the Grothendieck group we have [E] = n[S] for some n. If
E is skyscraper sheaf applying degree to both sides shows n must be 1. If E
is a line bundle, applying rank to both sides shows n = 1. In either case we
have that E ∼= S is stable.

And now we can prove that the G̃L+(2,R) action on numerical stability
conditions is free and transitive:

Proof of Theorem. Let σ = (Z,P) be an arbitrary numerical stability con-
dition on a curve X of positive genus. Since Hom(L, kx) 6= 0 for any line
bundle L and skyscraper sheaf kx, and they are both stable, we get that
φ(L) < φ(kx). By Serre duality, Ext1(kx, L) ∼= Hom(L, kX ⊗ ωx)

∨ 6= 0, so
φ(kx)− 1 < φ(L).

Notice that so far, we haven’t really used the fact that σ is numerical
stability condition. Recall from our discussion of the numerical Grothendieck
group that degree and rank give an isomorphism between N (X) and Z2.
Under that isomorphism, any skyscraper sheaf is sent to (0, 1) and a line
bundle is sent to a point of the form (1, d). This already implies that all
skyscraper sheaves have phases that differ by even numbers (they have the
same central charge), but in fact, since the above inequalities imply that
for two different skyscrapers but a single line bundle we have φ(kx) − 1 <
φ(L) < φ(ky) and φ(ky) − 1 < φ(L) < φ(kx), we see that we must have
φ(kx) = φ(ky). Similarly, the phase of any line bundle depends only on its
degree (an improvement over “its phase mod 2 depends only on the degree”).

I claim the inequalities for the phase we showed above already imply
that the is some matrix M ∈ GL+(2,R) such that M−1 ◦ Z will equal the
slope-stability central charge, − deg +i rank. Indeed, the inequalities show
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that a unique such matrix can be chosen so that these two central charges
agree on all skyscrapers and one specific line bundle. Then one can easily
show that they agree on all line bundles by using appropriate short exact
sequences connecting different line bundles. Finally, since line bundles and
skyscraper sheaves generate the Grothendieck group, this means the central
charges agree everywhere.

After picking any element of G̃L+(2,R) covering the matrix M we reduce
to the case where Z is the usual slope-stability central charge, but where
the phases of skyscraper sheaves might be off from the standard one by a
fixed even integer. That can also be corrected by the action of an element

of G̃L+(2,R). After doing that we get a t-structure whose heart contains
all skyscraper sheaves and all line bundles, and thus contains all coherent
sheaves. This forces this new heart to be exactly Coh(X): given two hearts
A and B of bounded t-structures, if A ⊆ B we must have equality. This is
easy to see by taking an object B of B and looking at the filtration of it whose
quotients lie in shifts of A: each shift of A is contained in the corresponding
shift of B, which shows the filtration must consist of just one object, namely
B, which is therefore in A.
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