
STABILITY CONDITIONS ON P1 AND WALL-CROSSING

CHARMAINE SIA

ABSTRACT. We sketch a proof that the stability manifold of the bounded derived category of coherent sheaves on P1,
Db Coh(P1), is isomorphic to C2 as a complex manifold. We also discuss the notion of wall-crossing for three hearts for
the t-structure on Db Coh(P1), namely Coh(P1), Rep(•⇒ •) and Rep(• •).

1. PRELIMINARIES

In [Bri07], Bridgeland introduced the notion of a stability condition (Z ,P ) on a triangulated category D.
This is an abstraction of the properties of µ-stability for sheaves on projective varieties. Here the central charge
Z : K(D)→ C is a group homomorphism from the Grothendieck group of D to the complex numbers and P is
a slicing of D, that is, there are full additive subcategories P (φ) ⊂ D for each φ ∈ R, satisfying the following
compability conditions:
(a) if E ∈ P (φ), then Z(E) = m(E)eiπφ for some m(E) ∈ R>0,
(b) for all φ ∈ R, P (φ + 1) =P (φ)[1],
(c) if φ1 > φ2 and A j ∈ P (φ j), then HomD(A1, A2) = 0,
(d) (Harder-Narasimhan property) for each nonzero object E ∈ D, there are a finite sequence of real numbers

φ1 > φ2 > · · ·> φn

and a collection of triangles

0= E0
// E1

//

��~~~~~~~
E2

//

��~~~~~~~
· · · // En−1

// En = E
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with A j ∈ P (φ j) for all j.
Bridgeland showed that the set of stability conditions Stab(D) on a fixed category D has a natural topology, and
that Stab(D) is in fact a manifold under this topology. Macrì [Mac04] showed that for a smooth projective curve

C over C of positive genus, Stab(Db Coh(C)) ∼= åGL+(2,R), the universal cover of the group of rank two matrices
with positive determinant.

The main theorem of this talk is the following:

Theorem 1 (Okada [Oka04]). The stability manifold for the bounded derived category of coherent sheaves on P1,
Stab(Db Coh(P1)), is isomorphic to C2 as a complex manifold.

The strategy is to show that the quotient of Stab(Db Coh(P1)) for a certain action of C×Z is isomorphic to C∗.
The C-action is defined as follows:

Definition 2. Let (Z ,P ) be a stability condition and z = x + i y ∈ C. Then z ∗ (Z ,P ) is defined by z ∗ Z = ez Z
and (z ∗P )(φ) =P (φ − y/π).

Remark 3. The real and imaginary parts of z act as rescaling and rotation respectively. Rotation affects the heart
of a triangulated category but preserves semistable objects (defined below), while wall-crossing, which we will
discuss later, preserves the heart but affects semistable objects.

Definition 4. A stability function on an abelian category A is a group homomorphism Z : K(A )→ C such that
for all 0 6= E ∈A , the complex number Z(E) lies in

H := {reiπφ : r > 0 and 0< φ ≤ 1}=H∪R<0 ⊂ C,
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where H= {x + i y | x , y ∈ R, y > 0} is the complex upper half-plane.
Given a stability function Z : K(A )→ C, the phase of an object 0 6= E ∈A is defined to be

φ(E) =
1

π
arg Z(E) ∈ (0,1].

An object 0 6= E ∈A is said to be semistable if every subobject 0 6= A⊂ E satisfies φ(A)≤ φ(E).

Example 5. Recall that the heart of a triangulated category is always an abelian category. A stability function
on the heart Coh(P1) of the triangulated category Db Coh(P1) is given by a choice of Z(kx) ∈ R<0 and Z(O ) ∈H,
where kx is a skyscraper sheaf. We illustrate the standard stability function

Zstd : K(Coh(P1))→ C,

E 7→ −deg E + i rk E,

which is given by Z(kx) =−1 and Z(O ) = i, below.

O (−1)OO (1)O (2)O (n)

kx

O (−1)[1]

· · ·

FIGURE 1. Standard stability function Zstd(E) = −deg E + i rk E on Coh(P1). Every object in
Coh(P1) has image in H (shaded gray).

By a lemma of Bridgeland, since Z satisfies the Harder-Narasimhan property, it extends to a stability condition
(Z ,P ) on Db Coh(P1). Rotation by z = −iφ(O (−1))π gives a stability condition z ∗ (Z ,P ) = (Z ,P ) such that
the heart P ((0, 1]) is equivalent to Rep(•⇒ •). We see this as follows.

A theorem of Beilinson says that there is an equivalence of triangulated categories

Db Coh(P1)→ Db Rep(•⇒ •).

Recall from class that

Rep(1•
α
⇒
β
•2)

is equivalent to the category of left modules on the path algebra k(• ⇒ •) of the quiver • ⇒ • (i.e. the free
(non-unital) associative algebra generated by the vertices and arrows of the quiver subject to the expected rules
of composition), and the quiver representation corresponding to k(•⇒ •) as a k(•⇒ •)-module is

k〈e1〉
fα
⇒
fβ

k〈e2〉 ⊕ k〈α〉 ⊕ k〈β〉.

Note that elements of the algebra act on elements of the module by postcomposition. Writing this out in tabular
format, we have

hhhhhhhhhhhhhhhhhhhk(•⇒ •) as algebra

k(•⇒ •) as module
e1 e2 fα fβ

e1 e1 0 0 0
e2 0 e2 fα fβ
fα fα 0 0 0
fβ fβ 0 0 0

TABLE 1. Action of k(•⇒ •) on itself
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Beilinson’s equivalence is given by

Db Coh(P1)→ Db Rep(•⇒ •)' Db(k〈e1〉
fα
⇒
fβ

k〈e2〉 ⊕ k〈α〉 ⊕ k〈β〉)

E 7→ Ext•(O ⊕O (1), E).

Let us do a few calculations. We have

Hom(O ⊕O (1),O ) = Hom(O ,O )⊕Hom(O (1),O ) = k〈idO 〉,

Ext1(O ⊕O (1),O )∼= Hom(O , (O ⊕O (1))⊗O (−2)) = Hom(O ,O (−1)⊕O (−2)) = 0

by Serre duality, since the dualizing sheaf of P1 is O (−2), and we know that

Exti(O ⊕O (1),O ) = 0 for i 6= 0, 1

because the abelian category of coherent sheaves on a smooth projective variety X of dimension n has homolog-
ical dimension at most n (i.e. Exti(F ,G ) = 0 for i > n and any two coherent sheaves F and G on X ).

We also have

Hom(O ⊕O (1),O (−1)[1]) = Ext1(O ⊕O (1),O (−1))∼= Hom(O (−1), (O ⊕O (1))⊗O (−2)) = k〈idO (−1)〉

by Serre duality and using Hom(O (m)[a],O (n)[b]) = Extb−a(O (m),O (n)),

Ext1(O ⊕O (1),O (−1)[1]) = Hom(O (−1)[1], (O ⊕O (−1))⊗O (−2)) = Ext−1(O (−1),O (−2)⊕O (−3)) = 0.

Again, using the result on the homological dimension of Coh(P1), we conclude that Exti(O ⊕O (1),O (−1)[1]) = 0
for i 6= 0.

There is a two-dimensional space of maps O → O (1). For a suitable choice of coordinates x0, x1 on P1, let us
abuse notation and call the corresponding generators of this space of maps x0 and x1 also. Similarly, there is an
action of

End(O ⊕O (1)) = End(O )⊕ End(O (1))⊕Hom(O ,O (1))⊕Hom(O (1),O ) = k〈O 〉 ⊕ k〈O (1)〉 ⊕ k〈x0〉 ⊕ k〈x1〉

on Hom(O ⊕O (1), E) by precomposition:

hhhhhhhhhhhhhhhhhhhhhhhhEnd(O ⊕O (1)) as algebra

End(O ⊕O (1)) as module
idO (1) idO x0 x1

idO (1) idO (1) 0 0 0
idO 0 idO x0 x1
x0 x0 0 0 0
x1 x1 0 0 0

TABLE 2. Action of End(O ⊕O (1)) on itself

Comparing Table 2 with Table 1, we conclude that O corresponds to the subquiver 0⇒ k and O (1) corresponds
to k⇒ 0.

Consider the result of rotating the heart in Figure 1 by z = −iφ(O (−1))π. We obtain the heart in Figure 2a,
which we showed above corresponds to the heart in Figure 2b. Thus, using the equivalence above, we see that
P (0, 1] is generated by O and O (−1)[1].

O (−1)

O

O (1)

kx

O (−1)[1]

(A) Zstd on Coh(P1) rotated by z =−iφ(O (−1)[1])π

0⇒ k

k⇒ 0

(B) Stability function on Rep(•⇒ •)

FIGURE 2. Equivalence of hearts
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We can express this using the commutative diagram below:

K(Db Coh(P1))
' //

��

K(Db Rep(•⇒ •))

��

E � //
_

��

ka⇒ kb
_

��
Z2 A // Z2 (−deg E, rk E) � // (a, b)

From the diagrams

O � //
_

��

0⇒ k
_

��
(0, 1) � // (0, 1)

O (−1)[1] � //
_

��

k⇒ 0
_

��
(−1,−1) � // (1,0)

kx
� //

_

��

k⇒ k
_

��
(−1,0) � // (1,1)

we see that the matrix of the linear transformation is

A=
�

−1 0
−1 1

�

.

2. WALL CROSSING

We now consider what happens to the semistable objects when we fix P ((0, 1]) and vary the stability function
eZ on it. From the above example, we note that eZ is determined by a choice of values z0 = eZ(O ), z−1 =
eZ(O (−1)[1]) ∈ H.

There are three cases, whose loci partition StabRep(•⇒•)(Db Coh(P1)), the locus of stability conditions on
Db Coh(P1) with heart P (0,1]' Rep(•⇒ •).

• φ(z0) < φ(z−1). This is the case we considered above, where eZ is equivalent to the standard stability
function Zstd(E) = −deg(E) + i rk(E) up to reparametrization of C by an element in GL+(2,R) (and
accordingly adjusting the phases of objects).

• φ(z0) = φ(z−1). Then any non-zero object in P ((0,1]) is semistable since all non-zero objects have the
same slope.

O (−1)[1]

O

FIGURE 3. Case when the generators z0 = eZ(O ) and z−1 = eZ(O (−1)[1]) of im Z have the same slope.

• φ(z0) > φ(z−1). Then any quiver ka ⇒ kb not of the form ka ⇒ 0 has a subobject 0 ⇒ k of larger
phase unless the original quiver had the form 0⇒ kb, so the multiples of O and O (−1)[1] are the only
semistable objects in P ((0, 1]).

O (−1)[1]O

(A) On P (0,1]

k⇒ 0

ka⇒ kb

0⇒ k

(B) On Rep(•⇒ •)

FIGURE 4. The multiples of O and O (−1)[1] are the only semistable objects when z0 = eZ(O )
has larger phase than z−1 = eZ(O (−1)[1]).
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Thus we see that the semistable objects change when as we pass through the locus φ(z0) = φ(z−1). In
particular, the skyscraper sheaf kx is an example of an object for which the property of being semistable changes
as we pass through the locus φ(z0) = φ(z−1). This leads us to the following definition, of which the locus
{(Z ,P ) ∈ Stab(Db Coh(P1)) | φ(z0) = φ(z−1)} is an example.

Definition 6. A wall is a codimension one submanifold of a stability manifold such that as one varies a stability
condition, a semistable object can only become non-semistable if one crosses a wall.

Aside. Suppose that we are in the last case φ(z0)> φ(z−1) and we deform Z such that z−1 leaves the upper half
plane by crossing the positive real line. In this case, the semistable objects do not change; however, we obtain a
new heartA ′ = fP ((0,1]) generated by the stable objects O and O (−1)[2].

OO (−1)[2]

FIGURE 5. Case when the generators z0 = eZ(O ) and z−1 = eZ(O (−1)[1]) of im Z have the same slope.

Using Hom(O (m)[a],O (n)[b]) = Extb−a(O (m),O (n)) and the result on the homological dimension of Coh(P1)
a last time, we see that there are no morphisms or extensions between these two objects, soA ′ is isomorphic to
the category of pairs of vector spaces and thus it is isomorphic to Rep(• •). This is an example of a heart A ′ of
Db Coh(P1) such that Db(A ′) 6= Db Coh(P1).

The following is a generalization of our observations above to any heart.

Lemma 7. Up to the action of Aut(Db Coh(P1)), for any stability condition on Stab(Db Coh(P1)) (i.e. not necessarily
one with heart P (0, 1]), there exists some p > 0 such that O (−1)[p] and O are semistable and φ(O (−1)[p]),
φ(O ) ∈ (r, r + 1] (i.e. φ(O )−φ(O (−1)[1])>−1) for some r ∈ R.

If φ(Z(O (−1)[1])) < φ(Z(O ), the multiples of the shifts of O (−1) and O are the only semistable objects. If
φ(Z(O (−1)[1]))> φ(Z(O ), then all line bundles and torsion sheaves are semistable.

In fact all cases in the above lemma exist:

Proposition 8. For any α,β ∈ R such that α− β > −1 and any mα, mβ ∈ R>0, there exists a unique stability
condition (Z ,P ) such that φ(O (−1)[1]) = β and φ(O ) = α, and z0 = mαeiπα, z−1 = mβ eiπβ . Moreover, we have
the following cases:

• if α > β , then for any r ∈ R, there exist p, q ∈ Z such that P ((r − 1, r]) = 〈O (−1)[p + 1],O [q]〉 and
p− q ∈ (α− β − 1,α− β + 1);

• if α= β , then for any r, there exists j such that 〈O (−1)[ j+ 1],O ( j)〉=P ((r − 1, r]);
• if α < β , then for any r, either there exist i, j ∈ Z such that P ((r−1, r]) = 〈O (i−1)[ j+1],O (i)[ j]〉 and
φ(O (i − 2)[ j + 1]) > r ≥ φ(O (i − 1)[ j + 1]), or there exists j ∈ Z such that P ((r − 1, r]) = CohP1[ j]
and r = φ(kx[ j]).

Corollary 9. The hearts on which there exists a stability function satisfying the Harder-Narasimhan property are
CohP1[ j] and 〈O (i− 1)[p+ j],O (i)[ j]〉 for all i, j ∈ Z and p > 0.

3. PROOF OF THE MAIN THEOREM

We now return to the C-action on Stab(Db Coh(P1)). As mentioned in the previous talk, åGL+(2,R) acts on

Stab(D) for any triangulated category D as follows. Regard åGL+(2,R) as the set of pairs (T, f ) where f : R→ R
is an increasing map with f (φ+1) = f (φ)+1 and T : R2→ R2 is an orientation-preserving linear isomorphism
such that the induced maps on S1 = R/2Z = (R2 \ {0})/R>0 are the same. Given a stability condition (Z ,P ) ∈
Stab(D) and a pair (T, f ) ∈ åGL+(2,R), define a new stability condition (Z ′,P ′) by setting Z ′ = T−1 ◦ Z and
P ′(φ) =P ( f (φ)). Note that the semistable objects do not change, but the phases have been relabeled.
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Proposition 10. The C-action is holomorphic, free, coincides with the action of a subgroup of åGL+(2,R) and
contains the shifts. The quotient Stab(T )/C is a complex manifold.

Proof. Bridgeland’s main theorem says that for each connected component Σ ⊂ Stab(D), there are a linear
subspace V (Σ) ⊂ HomZ(K(D,C), with a well-defined linear topology, and a local homeomorphism Z : Σ →
V (Σ) which maps a stability condition (Z ,P ) to its central charge Z . Holomorphicity thus follows from the
holomorphicity of the C-action on a vector space via multiplication by ez . The action is free since z ∗ Z = Z
implies that ex = 1, that is, x = 0, and z ∗P = P implies that y = 0. Note that the C-action by z has the same

effect as the action of (e−xA, y) ∈ åGL+(2,R), where A is rotation by the angle −πy . The shift [1] can be realized
at the action of iπ ∈ C. We omit the proof of the second sentence. �

Below, we state some facts without proof. (Proofs can be found in [Oka04, Section 4].) Denote by (Z) the copy
of Z that acts on Db Coh(P1) by tensoring with line bundles. Let X be the subset of Stab(Db Coh(P1)) consisting
of all stability conditions (Z ,P ) satisfying the following properties:

(a) O , O (−1)[1] are semistable,
(b) φ(z0)> 0,
(c) φ(z−1) = 1 and m(z−1) = 1 (m is defined as on page 1).

Then (Z)C · X = Stab(Db Coh(P1)) (so X contains a fundamental domain) and X is isomorphic to the upper
half-plane H by the map sending (Z ,P ) to log(m(z0)) + iπ(z0).

A fundamental domain of Stab(Db Coh(P1))/(Z)C is isomorphic to K := {x + i y ∈ C | y > 0, cos y ≥ e−|x |}, as
shaded in Figure 6 below. When passing to Stab(Db Coh(P1))/(Z)C, one identifies points on the boundary with
the same imaginary part.

STABILITY MANIFOLD OF P1 9

The slope and the length of O(−1)[1] are fixed by (b). So each (Z,P) ∈ X in
the stability manifold can be uniquely represented by Z(O) on the n-th sheet of the
Riemann surface of Log z, where n is the greatest integer such that φ(O)/2 ≥ n.
Here m(O), φ(O) > 0 by (a) and (c). �

Lemma 4.3. A fundamental domain of Stab(D(P1))/(Z)C is isomorphic to K
def
=

{x + iy ∈ C | y > 0, cos y ≥ e−|x|} as in the shaded domain in the figure below.
When passing to Stab(D(P1))/(Z)C one identifies points on the boundary that have
the same imaginary part.

e−x cos y = 1 ex cos y = 1

A

B

L− L+

y = π

y = π
2

L

K

Figure 2. A fundamental domain of Stab(D(P1))/(Z)C

Proof. Notice that the actions by line bundles and by C commute. Let (Z,P) ∈ X .
First, we will see that if φ(O) > 1, there are no repetitions; i.e., C(Z) · (Z,P) ∩
X = {(Z,P)}. By Theorem 1.2, all indecomposable semistable objects are shifts
of O(−1) and O. The action of O(i) · (x + iπψ) ∈ (Z)C changes (Z,P) into
(Z ′,P ′) such that P ′(φ(O) + ψ) = 〈O(i)〉 and P ′(φ(O(−1)[1]) + ψ) = 〈O(−1 +
i)[1]〉 m′(O(i))/m(O) = ex and m′(O(−1 + i)[1])/m(O(−1)) = ex. Hence, O and
O(−1)[1] are not semistable unless i = 0, and even if i = 0 we have φ′(O(−1)[1]) 6= 1
or m′(O(−1)[1]) 6= 1 unless φ = x = 0.

In the remaining case 0 < φ(O) ≤ φ(O(−1)[1]) = 1; repetitions C(Z) · (Z,P)∩X
are indexed by Z ∋ ı 7→ (Zi,Pi) = (zi,O(i)) · (Z,P). Here, zi = 1

m(O(i−1)[1]) +

iπ(1− φ(O(i− 1)[1])). Let us denote (Żi, Ṗi) = O(i) · (Z,P); i.e.,

Żi(O(−1)[1]) = Z(O(i− 1)[1]), φ̇i(O(−1)[1]) = φ(O(i− 1)[1]),

Żi(O) = Z(O(i)), φ̇i(O) = φ(O(i)).

We have zi∗(Żi, Ṗi) = (Zi,Pi) ∈ X , since 1−(zi∗φ̇i)(O) = φ(O(i−1)[1])−φ(O(i)) <

1 implies (zi∗φ̇i)(O) ∈ (0, 1]. Graphically we can explain actions above as follows.

FIGURE 6. A fundamental domain of Stab(Db Coh(P1))/(Z)C

By the Riemann mapping theorem and the reflection principle, this fundamental domain is conformally equiv-
alent to C∗, as in Figure 7 on the following page. (Ku is the left half of the shaded region and Kl is the right half
of the shaded region. We shall abuse notation and label the image under each map by the same letters.)

We can now prove the main result of this talk.

Proof. The action of (Z) on X= Stab(Db Coh(P1))/C gives an exact sequence

0 7→ π1(X)→ π1(X/Z)
α−→ π0(Z)→ π0(X).

We shall show that X is connected. Since X ∼= H is connected, so is C · X . Now, Stab(Db Coh(P1)) = (Z)C · X , so
it suffices to check that (Z) fixes some connected component of Stab(Db Coh(P1)). This is true because (Z) fixes
{(Z ,P ) ∈ Stab(Db Coh(P1)) | P ((0, 1]) = Coh(P1)}, which lies in X . Hence X is connected and the map α is a
surjective map Z → Z, hence an isomorphism. It follows that π1(X) is 0, so X is the universal covering of C∗,
that is, X = Stab(Db Coh(P1))/C = C. Since H1(C,O ) = 0, there is a unique extension Stab(Db Coh(P1)) ∼= C2.
This completes the proof. �
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The slope and the length of O(−1)[1] are fixed by (b). So each (Z,P) ∈ X in
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def
=

{x + iy ∈ C | y > 0, cos y ≥ e−|x|} as in the shaded domain in the figure below.
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e−x cos y = 1 ex cos y = 1
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L− L+

y = π

y = π
2

L

K
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Proof. Notice that the actions by line bundles and by C commute. Let (Z,P) ∈ X .
First, we will see that if φ(O) > 1, there are no repetitions; i.e., C(Z) · (Z,P) ∩
X = {(Z,P)}. By Theorem 1.2, all indecomposable semistable objects are shifts
of O(−1) and O. The action of O(i) · (x + iπψ) ∈ (Z)C changes (Z,P) into
(Z ′,P ′) such that P ′(φ(O) + ψ) = 〈O(i)〉 and P ′(φ(O(−1)[1]) + ψ) = 〈O(−1 +
i)[1]〉 m′(O(i))/m(O) = ex and m′(O(−1 + i)[1])/m(O(−1)) = ex. Hence, O and
O(−1)[1] are not semistable unless i = 0, and even if i = 0 we have φ′(O(−1)[1]) 6= 1
or m′(O(−1)[1]) 6= 1 unless φ = x = 0.

In the remaining case 0 < φ(O) ≤ φ(O(−1)[1]) = 1; repetitions C(Z) · (Z,P)∩X
are indexed by Z ∋ ı 7→ (Zi,Pi) = (zi,O(i)) · (Z,P). Here, zi = 1

m(O(i−1)[1]) +

iπ(1− φ(O(i− 1)[1])). Let us denote (Żi, Ṗi) = O(i) · (Z,P); i.e.,

Żi(O(−1)[1]) = Z(O(i− 1)[1]), φ̇i(O(−1)[1]) = φ(O(i− 1)[1]),

Żi(O) = Z(O(i)), φ̇i(O) = φ(O(i)).

We have zi∗(Żi, Ṗi) = (Zi,Pi) ∈ X , since 1−(zi∗φ̇i)(O) = φ(O(i−1)[1])−φ(O(i)) <

1 implies (zi∗φ̇i)(O) ∈ (0, 1]. Graphically we can explain actions above as follows.

z 7→ z−i
z+i //
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Z(Ox) and Z(O) as Z(O) = 1 + iy for some y > 0, then Z1(O) = 1
1+y2 (1 + iy),

since Ż1(O(−1)[1]) = −1 + iy and Ż1(O) = 1. This situation can be presented
graphically in the following figures.

1-1

O(−2)[1] Ox O

O(−1)O(−1)[1]

Figure 7. Z

1-1

O
Ox

O(−1)[1]

Figure 8. Z1

Let X ′ ⊂ X consist of all (Z,P) ∈ X such that Z(O) ∈ SZ . Then log(m(O)) +
iπφ(O) gives us an isomorphism between X ′ and K; we identify two boundary
points with the same imaginary value in K, since in Figure 6 they correspond to
the boundary points that can be connected by a ray from the origin. �

Lemma 4.4. Stab(P1)/(Z)C is conformally equivalent to C∗.

Proof. This follows from Riemann mapping theorem and Reflection principle. We
use notation from Figure 2; the origin and the infinite point are called A and B,
the boundary lines e±x cos y = 1 are called L±, and the upper imaginary axis by
L.

By z 7→ z−i
z+i , K is conformally equivalent to the subdomain in the unit disk

(|z| < 1) bounded by L±. Here, two boundary points ofK with the same imaginary
value go to the boundary points with the same real value. Let us denote the upper-
half and lower-half of K by Ku and Kl. See Figure 9.

Next, by the Riemann mapping theorem there is a bijective conformal mapping
from Ku to the unit disk. We can extend any isomorphism of bounded domains to
a homeomorphism on their closures by [7, Theorem 11-1]. By a linear fractional
transformation, we can rearrange three points on the boundary in arbitrary way as
long as we keep their order. Hence Ku is conformally equivalent to the unit disk
where A and B correspond to −1, 1, and the upper-half circle and the lower-half
circle correspond L− and L. See Figure 10.
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Z(Ox) and Z(O) as Z(O) = 1 + iy for some y > 0, then Z1(O) = 1
1+y2 (1 + iy),

since Ż1(O(−1)[1]) = −1 + iy and Ż1(O) = 1. This situation can be presented
graphically in the following figures.

1-1

O(−2)[1] Ox O

O(−1)O(−1)[1]

Figure 7. Z

1-1

O
Ox

O(−1)[1]

Figure 8. Z1

Let X ′ ⊂ X consist of all (Z,P) ∈ X such that Z(O) ∈ SZ . Then log(m(O)) +
iπφ(O) gives us an isomorphism between X ′ and K; we identify two boundary
points with the same imaginary value in K, since in Figure 6 they correspond to
the boundary points that can be connected by a ray from the origin. �

Lemma 4.4. Stab(P1)/(Z)C is conformally equivalent to C∗.

Proof. This follows from Riemann mapping theorem and Reflection principle. We
use notation from Figure 2; the origin and the infinite point are called A and B,
the boundary lines e±x cos y = 1 are called L±, and the upper imaginary axis by
L.

By z 7→ z−i
z+i , K is conformally equivalent to the subdomain in the unit disk

(|z| < 1) bounded by L±. Here, two boundary points ofK with the same imaginary
value go to the boundary points with the same real value. Let us denote the upper-
half and lower-half of K by Ku and Kl. See Figure 9.

Next, by the Riemann mapping theorem there is a bijective conformal mapping
from Ku to the unit disk. We can extend any isomorphism of bounded domains to
a homeomorphism on their closures by [7, Theorem 11-1]. By a linear fractional
transformation, we can rearrange three points on the boundary in arbitrary way as
long as we keep their order. Hence Ku is conformally equivalent to the unit disk
where A and B correspond to −1, 1, and the upper-half circle and the lower-half
circle correspond L− and L. See Figure 10.
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Next, by the composition of z 7→ −2i
(
zi+1
zi−1

)
, z 7→ z+

√
z2−4
z , and z 7→ 1

z , Ku

as the unit disk is conformally equivalent to the lower-half disk, where B and A
correspond −1 and 1, and the lower-half circle corresponds to L−. See Figure 11.
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Now, by the Reflection Principle we can extend the bijective conformal mapping
from K to the unit disk, where the two points on L± with the same imaginary part
go to the points on the boundary on the unit disk with the same real part.

Finally, z 7→ −i( z+1
z−1 ) sendsK as the unit disk to the upper-half plane, where two

points on the boundary with the same real value are mapped to two points on the
boundary with the same absolute value. Then, z 7→ z2 sends K as the upper-half
plane to C∗ and identifies on the real axis. �

Proof of Theorem 1.1. By Lemma 4.4, we have Stab(D(P1))/(Z)C ∼= C∗. The ac-

tion of Z on X = Stab(D(P1))/C gives an exact sequence 0 → π1(X) → π1(X/Z)
α→

π0(Z) → π0(X). We will show that X is connected. Recall that Stab(D(P1)) =
(Z)C · X and, by Lemma 4.2, X ∼= H is connected, hence so is C · X . It remains
to check that (Z) fixes some connected component of Stab(D(P1)), but it fixes
{(Z,P) ∈ Stab(D(P1)) | P((0, 1]) = CohP1}, which lives in X . So X is connected
and the map α is a surjective map Z → Z, therefore α is injective and π1(X) = 0.
Hence X is the universal covering of C∗; i.e., Stab(D(P1))/C ∼= C. Moreover, since
H1(C,O) = 0, Stab(D(P1)) ∼= C2. �

5. Walls and hearts of Stab(D(P1))

We define the “cell” StabC(T ) for a heart C by StabC(T ) = {(Z,P) ∈ Stab(T ) |
P((0, 1]) = C} (SC(T ) for short). In this section, we describe all cells SC(D(P1)) and
how they fit together. We describe a fundamental domain of Stab(D(P1))/(Z)R as
a real manifold, this shows that the quotient Stab(D(P1))/(Z)R is an open torus.

For the hearts Cj and Cp,i,j from Corollary 3.4, let Sj = SCj and Sp,i,j = SCp,i,j .
Then they can be described as

Sj = {(Z,P) ∈ Stab(D(P1)) | φ(Ox[j]) = 1, 0 < φ(O[j]) < 1} ∼= R<0 ×H;

Sp,i,j = {(Z,P) ∈ Stab(D(P1)) | 0 < φ(O(i− 1)[p+ j]), φ(O(i)[j]) ≤ 1} ∼= H2.

−
�

z+1
z−1

�2

oo

12 SO OKADA
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Now, by the Reflection Principle we can extend the bijective conformal mapping
from K to the unit disk, where the two points on L± with the same imaginary part
go to the points on the boundary on the unit disk with the same real part.

Finally, z 7→ −i( z+1
z−1 ) sendsK as the unit disk to the upper-half plane, where two

points on the boundary with the same real value are mapped to two points on the
boundary with the same absolute value. Then, z 7→ z2 sends K as the upper-half
plane to C∗ and identifies on the real axis. �

Proof of Theorem 1.1. By Lemma 4.4, we have Stab(D(P1))/(Z)C ∼= C∗. The ac-

tion of Z on X = Stab(D(P1))/C gives an exact sequence 0 → π1(X) → π1(X/Z)
α→

π0(Z) → π0(X). We will show that X is connected. Recall that Stab(D(P1)) =
(Z)C · X and, by Lemma 4.2, X ∼= H is connected, hence so is C · X . It remains
to check that (Z) fixes some connected component of Stab(D(P1)), but it fixes
{(Z,P) ∈ Stab(D(P1)) | P((0, 1]) = CohP1}, which lives in X . So X is connected
and the map α is a surjective map Z → Z, therefore α is injective and π1(X) = 0.
Hence X is the universal covering of C∗; i.e., Stab(D(P1))/C ∼= C. Moreover, since
H1(C,O) = 0, Stab(D(P1)) ∼= C2. �

5. Walls and hearts of Stab(D(P1))

We define the “cell” StabC(T ) for a heart C by StabC(T ) = {(Z,P) ∈ Stab(T ) |
P((0, 1]) = C} (SC(T ) for short). In this section, we describe all cells SC(D(P1)) and
how they fit together. We describe a fundamental domain of Stab(D(P1))/(Z)R as
a real manifold, this shows that the quotient Stab(D(P1))/(Z)R is an open torus.

For the hearts Cj and Cp,i,j from Corollary 3.4, let Sj = SCj and Sp,i,j = SCp,i,j .
Then they can be described as

Sj = {(Z,P) ∈ Stab(D(P1)) | φ(Ox[j]) = 1, 0 < φ(O[j]) < 1} ∼= R<0 ×H;

Sp,i,j = {(Z,P) ∈ Stab(D(P1)) | 0 < φ(O(i− 1)[p+ j]), φ(O(i)[j]) ≤ 1} ∼= H2.
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FIGURE 7. Conformal equivalence between K := {x + i y ∈ C | y > 0, cos y ≥ e−|x |} with points
on the boundary with the same imaginary part identified and C∗. The diagrams in the right-
hand column show how the conformal equivalence acts on Ku.
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