
Homological Mirror Symmetry

Given a smooth, compact complex variety X, we can study it through its
bounded derived category of coherent sheaves, DbCoh(X), and homological
mirror symmetry lets us turn the study of that category into symplectic ge-
ometry. We do this by looking for a mirror, a symplectic manifold X∨ and an
equivalence DbCoh(X) ∼= Fuk(X∨). There are very many technicalities in-
volved which we will ignore today, this lecture is meant to be an introduction
that gives you a rough picture of what’s going on.

Symplectic manifolds

Definition. A symplectic manifold is an even dimensional smooth manifold
X equipped with a closed 2-form ω such that the map TpX → TpX given by
v 7→ ω(v, ) is an isomorphism.

Here are some examples:

• We can take R2 with symplectic form dx ∧ dy.

• More generally, R2n with form
∑n

i=1 dxi ∧ dyi.

• Even more generally, given any n dimensional manifold N , the cotan-
gent bundle T ∗N is a symplectic manifold via a symplectic form given
in local coordinates by

∑n
i=1 dpi ∧ dqi, where p1, . . . , pn are local coor-

dinates in N over a coordinate patch U where the cotangent bundle
is trivial, and q1, . . . , qn are the coordinates on T ∗ N |U giving the
trivialization.

Symplectic manifolds arise naturally in classical mechanics. Say you have
a system where the space of possible positions of the particles is a manifold
N , then T ∗N parametrizes both position and momentum of the particles in
the system, and is called the phase space. The evolution of the system can
be described on T ∗N : there is a function H : T ∗N → R, called the energy
or Hamiltonian of the system that determines the evolution in the following
way: under the isomorphism given by ω, dH will correspond to some vector
field XH called a Hamiltonian vector field, and integrating this field produces
a flow φH(t) : Y → Y , which turns out to be a symplectomorphism, i.e.,
φH(T )∗ω = ω at any time t.
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Note. This way of setting up classical mechanics only uses the symplectic
structure on T ∗N , not the fact that it is the cotangent bundle, and so makes
sense on other symplectic manifolds. There are indeed natural examples of
phase spaces which are not of the form T ∗N .

Symplectic geometry is soft

Generally speaking you should think of symplectic manifolds as soft o floppy,
for example:

• A general symplectic manifold Y has a infinite dimensional space of
symplectomorphisms (we already saw that a Hamiltonian produces a
1-parameter family of symplectomorphisms). Contrast this with the
much more rigid case of algebraic varieties which can easily have only
finitely many automorphisms.

• Symplectic manifolds are all locally symplectomorphic to the example
of R2n with 2-form

∑n
i=1 dxi ∧ dyi. So unlike, say, the case of Rie-

mannian geometry where there are interesting local invariants such as
curvature, symplectic geometry is global.

Lagrangian submanifolds

Definition. A Lagrangian in a symplectic manifold Y of dimension 2n is an
n-dimensional submanifold L such that ω|L = 0. (This means ω(v, w) = 0 if
both v and w are tangent to L.)

Some examples:

• In R2 we can take the subset given by x = 0, or more generally, the
graph Γf = {(x, f(x)) : x ∈ R} of any smooth function f : R→ R.

• In T ∗N , the zero section is a Lagrangian.

• Given two symplectic manifolds (Y, ω), (Y ′, ω′), the manifold Y × Y ′
can be given the structure of a symplectic manifold by using the 2-form
ω × (−ω′). Given any diffeomorphism1 f : Y → Y ′, we have that f is
a symplectomorphism if and only if Γf is a Lagrangian in Y × Y ′.

1the existence of which forces Y and Y ′ to have the same dimension, of course
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Two Lagrangians inside the same symplectic manifold Y have comple-
mentary dimensions and thus, if they are positioned generically will have a
discrete set of points of intersection. These points of intersection often have
geometric or dynamic meaning, for example, if H is a Hamiltonian on Y , we
might be interested in finding all of the orbits of the Hamiltonian flow φH(t)
that have period, say, 1. These orbits are given as the intersection ΓφH(1)∩∆
inside Y ×Y (again, with symplectic structure given by changing the sign of
one of the ω’s) of the graph of the time 1 flow with the diagonal. In the case
of a time independent Hamiltonian, this intersection is not transverse and
does not consist of a discrete set of points, but rather consists of whole period
1 orbits. This example works better for a time dependent Hamiltonian, but
it was only meant to illustrate that intersection points of Lagrangians, here
ΓφH(t) and ∆, can have intrinsic interest.

Because of this we want some neat way to package Lagrangians and their
intersection points, and this is what the Fukaya category is meant to achieve.
There are many technicalities involved in defining the Fukaya category and
here we will only give an impressionistic account through a series of increas-
ingly detailed definitions.

Succesive approximations to the Fukaya category

Fukaya category, v0.1. The first, roughest approximation to the Fukaya
category of a symplectic manifold Y is that the objects are Lagrangians in
Y and morphisms L1 → L2 are given by paths from some point on L1 to
some point on L2. Notice that the points of intersection L1 ∩ L2 correspond
to the paths of length 0. Notice also that you can’t always compose paths,
only when their endpoints match appropriately. After this talk you should
forget this construction as it is completely wrong.

Fukaya category, v0.2. We can think of the length of a path as a Morse
function µ on the space of paths from a point on L1 to a point on L2 (or
else replace it by a Morse function), and define hom(L1, L2) to the homology
H•(Cµ(L1, L2)) of the Morse complex instead. The critical points of this
Morse function will be, as mentioned before, the points of intersection of L1

and L2. Before going further we should take a short detour:
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A 15 second introduction to Morse theory

(If it’s supposed to be possible to give an hour and a half introduction to
the Fukaya category, it should be possible to give a 15 second introduction
to Morse Theory!)

Let M be a smooth manifold and µ : M → R a smooth function. We will
assume the critical points of µ are isolated and that we are in the generic
situation: the critical points of µ are non-degenerate. The Morse complex
of µ is a chain complex that allows us to compute the homology of M with
coefficients in K. As a K-module it is given by

⊕
p∈Crit(µ) K〈p〉. The grading

is obtained by looking at the gradient flow for µ as follows: for each critical
point p of µ, we can consider the union of the flow lines going into p, called
the stable locus, and out of p, the unstable locus of p; we define the degree
of p to be deg(p) = dim(Unstablep). If we have two critical points p and
q whose degrees differ by one, deg(q) = deg(p) − 1, there will be a finite
number cpq of flow lines going from p to q, and we define the differential by
dµ(p) =

∑
deg(q)=deg(p)−1 cpqq.

Now back to Fukaya v0.2: As we said before, we want the Morse
function µ on the space of paths from a point on L1 to a point on L2 to be
something like length, in that the critical points, in the case of transverse
intersection should be given simply by L1∩L2. The Morse differential dµ will
count holomorphic disks2 in Y : given p, q ∈ L1 ∩ L2, the coefficient of q in
dµ(p) will be the number of holomorphic maps from a disk into Y that send
two specified points a and b on the boundary to p and q, and such that the
two arcs of the boundary of the disk going between a and b are sent to L1

and L2 respectively. We want a finite dimensional space of such holomorphic
disks which will happen if deg(q) = deg(p)− 1.

Composition in this category is given by counting holomorphic triangles.
Given three Lagrangians L1, L2 and L3 and points of intersection p12, p23, p13,
the coefficient of p13 in the composition of p12 and p23 is the number of
holomorphic maps from a triangle into Y , with the corner going to p12, p23, p13

and the sides of the triangle going to the appropriate Lagrangian (e.g., the
side joining p12 with p23 should be contained in L2, etc. Notice that this
means that composition is more or less induced by composition of paths (cf
v0.1).

2So at this point we need to assume Y has a complex structure or, at least, an almost
holomorphic structure, compatible with the synplectic structure
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To cut down on the dimension of the hom spaces, we’d like that when two
Lagrangians are related by a time-dependent Hamiltonian, φH(t)(L1) = L2,
they correspond to isomorphic objects in the Fukaya category. If we had that
requirement, how many non-isomorphic objects would we have left? Let’s
bound the number of non-isomorphic Lagrangians near a given Lagrangian
L. Recall that L has a tubular neighborhood that is symplectomorphic to
T ∗L; we say L′ is near L if it is a section of this embedded copy of T ∗L.
We can write L′ as the graph Γθ of a 1-form θ on L and one can check
that L′ being Lagrangian corresponds exactly to θ being closed. Also, if θ
is exact, say θ = df , one can check that L′ is Hamiltonian isotopic to L,
which we want to imply that L′ is isomorphic to L in the Fukaya category.
Therefore, dimH1(L,R) is an upper bound for the dimension of the space of
non-isomorphic Lagrangians near L.

Fukaya category, v0.3. For this version, we actually change the objects:
now we will take pairs (L, ξ) of a Lagrnagian and a flat U(1) connection
on L. (Even this is not the final form of the objects, more decorations
are missing.) For the morphisms, we twist the Morse complex using the
connections: hom((L1, ξ1), (L2, ξ2)) =

⊕
p∈L1∩L2

K〈p〉 ⊗ hom(ξ1, ξ2)p.

Now we can state the simplest case of homological mirror symmetry:
Suppose Y is a compact symplectic manifold, with a compatible complex

structure, and holomorphic volume form Ω. A Lagrangian L in Y is called
special if Ω|L = eiπθΩR for some constant θ and some real-valued form ΩR.
Now suppose further that Y contains a special Langrangian torus L1. It
follows that Y contains a dimH1(L1,R)-dimensional family of special La-
grangian tori. In the best case scenario Y is actually a special Lagrangian
bundle over some base B. Let X be the fiberwise dual bundle, i.e., X is the
bundle over the same B whose fiber over b ∈ B is L∨b := hom(π1(Lb), U(1)).

Claim. X has a natural complex structure, is a Calabi-Yau manifold
and DbCoh(X) ∼= DΠFuk(Y ). The equivalence is roughly as follows: given a
Lagrangian L in Y assume it intersects every fiber Lb in a single point, that
point corresponds to a U(1)-local system on L∨b , so L gives rises to a family
of local systems on X which can be completed to get a coherent sheaf.

A complex structure on Y gives rise to a Bridgeland stability condition
on DΠFuk(Y ) and an object (L, ξ) is stable if it has special Lagrangian
representative and in that case the θ appearing in the definition of special is
the phase of the object according to the stability condition.
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Further reading

From here, the next step is to do an example! The case of an elliptic curve
(whose mirror also turns out to be an elliptic curve) was worked out by
Polishuk and Zaslow. For an introduction to the Fukaya category, see Dennis
Auroux’s notes. Homological mirror symmetry is described in Kontsevich’s
famous ICM address. For the case of Calabi-Yau hypersurfaces in Pn, see
Nick Sheridan’s paper. He also has videos of lectures on the IAS webpage.
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