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1. Monoidal Categories

Definition 1. A monoidal category is a category with the additional data: i) “associative
multiplication of categories”, i.e. a map for combining objects, ·⊗· : C×C → C, such that for
all A,B,C ∈ Cobj, there exists a natural isomoprhism αA,B,C : (A⊗B)⊗C → A⊗ (B ⊗C),
ii) “identity”, i.e. some object 1 such that for all A ∈ Cobj, there exist natural isomorphisms
λ1A : 1⊗ A→ A and λ2A : A⊗ 1→ A.

Because we only stipulate associativity up to isomorphism, we have to make sure that all
expansions of a products are the same, i.e. that we can essentially imagine our αA,B,C , λ1A,
and λ2A are equalities so that strings of the form A1 ⊗ A2 ⊗ · · ·An are well-defined up to
isomorphism. By a result called Mac Lane’s coherence theorem (we omit the proof), it suffices
to show that i) the two different expansions from ((A⊗B)⊗C)⊗D to A⊗ (B ⊗ (C ⊗D))
in the first of the following diagrams are the same (convince yourself that there are only
two such expansions), ii) αA,1,B and λ2A,λ1B “play nicely” in the sense that we can expand
(A⊗ 1)⊗B into A⊗B either directly by λ2A⊗ IdB or by (IdA⊗λ1B) ◦ αA,1, B, as shown in
the subsequent diagram.
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(A⊗ 1)⊗B
αA,1,B- A⊗ (1⊗B)

A⊗B

IdA⊗λ1B
?

λ 2
A ⊗

Id
B

-

Example 1. The category of finite sets equipped with ⊗ the Cartesian product and 1 the
single-point set is a monoidal category. The category of R-modules over a commutative ring
equipped with ⊗ the tensor product and 1 the ring R itself is a monoidal category.

Example 2. The category Top of topological spaces equipped with ⊗ the Cartesian product
and 1 the topological space with underlying set {∗} is a monoidal category.

2. Enriched Categories

Definition 2. A category C is enriched over a monoidal category M is the data of i) a
set of objects, ii) for each pair of objects A,B ∈ Cobj, there is an object in Mobj, denoted
by C(A,B), which we think of as the generalization of a “morphism” from A to B, iii) for
each triple of objects (A,B,C) in Cobj, there is a morphism ◦A,B,C : C(A,B) ⊗ C(B,C) →
C(A,C) given by the product M is equipped with, which we think of as a generalization of
a “composition law,” iv) for each object in Cobj there is an “identity morphism,” namely a
morphism iA : 1 ∈Mobj → C(A,A).

We want to make sure the associativity (up to isomorphism) property of the monoidal
category, the composition law, and the identity morphism, again, all “play nicely” with each
other, so we get two familiar looking coherence conditions:

C(A,D)

C(A,B)⊗ C(B,D)
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-
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Example 3. But recall that Top is a monoidal category so that we have a notion of
Top-enriched categories C. The category of compactly generated Hausdorff spaces, call it
CGHaus is a Top-enriched category.

Remark 1. Unfortunately, Top itself is not a Top-enriched category because the compo-
sition map C(X, Y ) × C(Y, Z) → C(X,Z) need not be continuous in the compact-open
topology.

Proof. For any two spaces X, Y , the space of continuous functions C(X, Y ) is also a space
when endowed with the compact-open topology : the set of all functions sending a compact
subset K ⊂ X into an open subset U ⊂ Y forms a sub-basis for the topology. We first
need to verify that for every triple of spaces X, Y, Z, there is a morphism ◦X,Y,Z : C(X, Y )⊗
C(Y, Z) → C(X,Z). But this can just be given by composition: for any f ∈ C(X, Y ) and
g ∈ C(Y, Z), send f ⊗ g to g ◦ f , and because X, Y, Z are compactly generated Hausdorff,
the composition map is continuous.

Next, for each space X ∈ CGHausobj, we can pick the identity morphism to simply be
the identity map in C(X,X). It is straightforward to verify that our two coherence diagrams
commute. �

Proposition 1. For objects A,B,C in CGHaus, equipped with the structure of a Top-
enriched category C, there is a natural homeomorphism φ : C(A⊗B,C) ∼= C(A,C(B,C)).

Remark 2. In computer science, specifically functional programming, this equivalence is
known as “currying.”

Proof. Begin with an f in C(A,C(B,C)) and send this to g such that g(x, y) = f(x)(y). In
the other direction, begin with a g in C(A ⊗ B,C) and send this to an f such that f(x)
sends y to g(x⊗ y). We want to show that this map is continuous in both directions.

In the first direction, it suffices to show that the elements in the sub-basis of the compact-
open topology of C(A ⊗ B,C) are sent to open sets in C(A ⊗ B,C); in fact, it suffices to
show that for each K ⊂ A compact, L ⊂ B compact, and U ⊂ C open, the open element
(K, (L,U)) denoting the set of all maps that take K ⊂ A inside the set of all maps from L
into U , is taken to an open set in C(A⊗B,C), namely the set of all maps (K ⊗ L,U), and
because the product of two compact sets is compact, we are done in this direction.

In the other direction, begin with a sub-basis element (K,U) of C(A⊗B,C) where K is
compact in A× B and U is open in C. The basic idea is that we want to approximate our
compact set K, which certainly is not a simple cartesian product of compact sets in A and
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B, by finitely many compact boxes. Specifically, we want to show that for any f ∈ φ(K,U),
there are compact subsets K1,...,Kn of A and compact subsets L1, ..., Ln of B such that
f ∈ ∩ni=1(Li, (Ki, U)) ⊂ φ(K,U).

Denote the function corresponding to f to be f0 ∈ (K,U). For each (x, y) ∈ K, choose
a neighborhood Ux,y

0 of x in Kx and a neighborhood V x,y
0 of y in Ky, where Kx and Ky

denote the projections of A × B onto A and B, respectively, and pick them such that
f0(U

x,y
0 × V x,y

0 ) ⊂ W , which we can do by continuity of f0. Now we want to pick closed
neighborhoods of x contained inside these larger neighborhoods: for each x ∈ Kx and each
y ∈ Ky, choose a neighborhood Ux,y and V x,y, respectively, such that their closures Kx,y and
Lx,y are in Ux,y

0 and V x,y
0 . By compactness of K, we can pick a finite open subcovering of J

by choosing from our covers (Ux,y × V x,y)capK, and denote the covers by (U i × V i) ∩ J for
i = 1, ..., n. For convenience, call the Ux,y

0 (V x,y
0 ) and Kx,y (Lx,y) corresponding to each U i

(V i) by U i
0 (V i

0 ) and Ki (Li), respectively.
Then note that f(Li)(Ki) = f0(K

i × Li) ⊂ f0(U
i
0 × V i

0 ) ⊂ W , and because Ki and Li are
closed subsets of compact sets, namely Kx and Ky, respectively, they are compact. As a
result, f lies inside ∩ni=1(Li, (Ki, U)). We want to show that

∩ni=1(Li, (Ki, U)) ⊂ φ(K,U),

so take some g on the left and call its preimage in φ the function g0. We know that g0(K
i×

Li) = g(Li)(Ki) ⊂ U by definition, and because each (x, y) ∈ K belongs to such a compact
box Ki × Li, g0 ∈ (K,U) and thus g ∈ φ(K,U) as desired. �


