∞ -categories Reading Course Notes

Sitan Chen

1 Oct. 2, 2013

1.1 Geometric realization of simplicial sets

We can define a functor from Δ , the cateogry of simplicial sets, to spaces, objectwise by sending [n] to Δ^n , the standard geometric *n*-simplex. Morphism-wise, if the original morphism was an order-preserving injection $f : [n] \rightarrow [m]$ to an Ffwhich sends the coordinate x_i in $\Delta^n \subset \mathbb{R}^n$ to the coordinate $x_{f(i)}$ in $\Delta^m \subset \mathbb{R}^m$. Recall that in the geometric realization of a semisimplicial set, we obtained a space via

$$(X_n \times \Delta^n) / ((d_i x, u) \sim (x, \delta_i u))$$

In the geometric realization of a simplicial set, our gluings will be obtained not just by identifying elements by the injective maps but also by the degeneracy maps going in the other direction, giving

$$(X_n \times \Delta^n) / ((fx, u) \sim (x, fu)).$$

Let's look at what the gluing $(fx, u) \sim (x, fu)$ does: $x \in X_m$, $u \in \Delta^n$, and $fx \in X_n$, $fu \in \Delta^m$. We are familiar with what happens when f is orderpreserving injective. In the case of f order-preserving surjective: take the example of [n] = 1 and [m] = 0 so that $x \in X_0$, $u \in \Delta^1$, $fx \in X_1$, and $fu \in \Delta^0$, then the entire 1-simplex gets glued down to the point.

Recall that products and geometric realization don't commute for semi-simplicial sets but they do for simplicial sets.

Let's now define a functor going the other way, from spaces to simplicial sets. We can just take Y at degree n to $Hom(\Delta^n, Y)$. Note that with the Yoneda embedding, we can actually same similar things after replacing "spaces" with "categories."

1.2 Adjoint Functors

If we have some functors $F : C \to D$ and $G : D \to C$ such that Hom(F(X), Y)and Hom(X, G(Y)) are in bijection, then we say that they are *adjoint functors*. We expect the following diagram to commute:

$$\operatorname{Hom}(F(X), Y) \xrightarrow{\circ F(f)} \operatorname{Hom}(F(X'), Y)$$

$$\left| \begin{array}{c} \Phi_{X,Y} & \Phi_{X',Y} \\ \end{array} \right|$$

$$\operatorname{Hom}(X, G(Y)) \xrightarrow{\circ f} \operatorname{Hom}(X', G(Y))$$

Proposition 1. Geometric realization and Sing are adjoints.

Proof. Start with a map $\phi : X_{\cdot} \to \operatorname{Sing}(Y)$, which takes X_n to $\operatorname{Hom}(\Delta^n, Y)$. On the other hand, in $|X_{\cdot}| \to Y$, take some (x_n, u) on the left and send that to $\phi(x_n)(u) \in Y$. This is well-defined because (fx, u) is sent to $\phi(fx)(u) = f(\phi)(x)(u) = \phi(x)(fu)$. It is left as an exercise to the reader to prove naturality.

1.3 Kan Complexes

Define the horn $\Lambda_k^n = \partial \Delta^n$ minus the face opposite vertex k.

Say we had a map from Λ_k^n to a simplicial set K and that we can include this into the standard *n*-simplex Δ^n . If there exists a lifting from Δ^n to K for any f, then we say that K is a *Kan* complex.

Theorem 1. Sing(Y) is a Kan complex.

Proof. By adjointness of singular chain complex functor and geometric realization functor, we can associate to any $f : \Lambda_k^n \to \operatorname{Sing}(Y)$ an $f' : |\Lambda_k^n| \to Y$. We have a deformation retract from $|\Delta^n|$ to $|\Lambda_k^n|$, and thus a map from $|\Delta^n| \to Y$ by $f' \circ d \circ i$ which is f'. We thus get a corresponding map from $\Delta^n \to \operatorname{Sing} Y$, because by naturality, composing with inclusion first and last is the same. \Box

Morally, Kan complexes are simplicial sets that behave nice enough to be thought of as spaces.