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1 Complex oriented cohomology theories and formal group laws

Let E be a commutative ring spectrum and g : V' — X a C™-bundle. We let V}) be the complement of the zero
section of V| F' = C" a fiber, Fy the complement of 0 in F'. A complex orientation or Thom class for F is
an element v € E?"(V, ;) such that under the composition E>*(V,Vy) — E**(F, Fy) & E**(C",C"—{0}) =
EY, v gets sent to a unit of the ring moE. The Euler class of v is a class e(v) € E2"(X) such that ¢*(e(v))
is the image of v in E**(V).

Using the Gysin sequence, it can be shown that E*CP> = E*[[e(()]], where ( is the topological line
bundle. (Here and afterwards, we write E* for the ring 7, E.)

This allows us to construct a formal group law from any FE. Namely, if £&; and &; are two line bundles over
a space X, then e(&; ® &) = Fr(e(£1),e(&2)), where F is a power series over E* in two variables. We also
write this as e(&1) +r, €(£2). Now, by the standard properties of the tensor product such as associativity
and commutativity up to isomorphism, the operation described is a smooth 1-parameter formal Lie group
with a coordinate — in other words, a formal group law, or FGL.

If we change the choice of Thom class, we also change the Euler classes and thus the FGL. If e and ¢’
are two choices of Euler class maps and F' and F’ the associated FGLs, then e and ¢’ will satisfy a relation
e'(€) = p(e(§)), where ¢(z) € E*[[z]] satisfying the following two conditions:

e ¢(0) =0, since ¢ must be in the augmentation ideal of E*[[z]], and
e ¢'(0) is a unit, since the Thom class must still be sent to a unit in E°.

Thus, ¢ is of the form

o(z) = apx 4+ ar2* + aga® - -

with ag a unit (note the odd indexing), and we have

oz +ry) = ¢(x) +r o(y).

Such a ¢ is called an isomorphism of FGLs. (If ag = 1, it is a strict isomorphism.)
There is a category (indeed, a groupoid) of FGLs and isomorphisms over a fixed ring. At this point,
there are basically three examples available to us.

1. HQ*, ordinary cohomology. The Chern class of a tensor product of line bundles is just the sum of
their Chern classes, so z 4+ y is just = + y.

2. K*, complex K-theory. The Euler class is given by e(£) = (¢ — 1) where 8 € K? is the Bott element.
Thus z+py =z +pry+ Bxy.

2bis Real K-theory KO* is not complex orientable.

3. MU*, complex cobordism. Surprisingly, the coefficient ring both has a simple structure and represents
the FGLs functor, in the sense given by the following theorem.

Theorem 1.1 (Lazard-Quillen). There is a commutative ring L, the Lazard ring, and an FGL F,, over L,
such that there is a natural isomorphism Hom(L, R) = {FGLs over R}, given by sending a map f: L — R
to foF.. Moreover, there is a non-canonical isomorphism L = Z[xy,xa,...]. Finally, MU* = L, again
non-canonically, but with any choice of orientation giving an isomorphism.



2 Height and Landweber exactness
Fix a prime p, a ring R, and an FGL F over R. We define

—_———

p times

Mod p, this is a power series in P, of the form v2? 4 --- for some v; € R. Mod (v, p), we get a power
series in xpz, of the form vgxp2 + .-+, and so on. We thus define elements v,, € R for each n € N.

Definition 2.1. F has height n > 1 ifp=v; =--- = v,_1 = 0 and v,, is a unit. (In particular, R must
have characteristic p.)

F is Landweber exact if p,vq,vs, -+ is a regular sequence. This means that each element in the
sequence is a nonzerodivisor mod the previous elements.

Theorem 2.2 (Lazard). If R is an algebraically closed field of characteristic p, then two FGLs are isomorphic
iff they have the same height.

Theorem 2.3 (Landweber exact functor theorem). If F' is a Landweber exact FGL over a ring R, then the
functor

X = R®nu, MU, X,

is a homology theory, written E(R, F).X, and E(R, F). = R,. (Here the tensor product is computed using
the map MU, — R determined by F.)

Example 2.4. Let R = Z,)[v1,...,v '], and choose an FGL F over R such that

plr(z) = pr +pvia? +p - +p vzl

for some n. (That such an F exists is guaranteed by the theory of p-typical FGLs, on which presumably
more later.) Then E(R, F'). is Johnson-Wilson homology, written E(n)..

Example 2.5. Morava K-theory is a sequence of homology theories with K (n). = F,[vif!] and [p]r(z) =
vnpzP" . These are ‘field theories’ — every graded module is free, the Kiinneth map is an isomorphism, and so
on.

Example 2.6. Morava E-theory is a sequence of homology theories with (E,,). = w(Fpn)[[11, - - -, tn—1]][#*1]
with pi1,. .., ttn—1 in degree zero. Here w is the Witt vector functor. For example, w(F,) = Z,.

)

Theorem 2.7 (Hopkins-Smith). Let X be a finite CW-spectrum and K(n — 1),X = 0. Then for some t,
for s =2t(p™ — 1), there exists a nonzero map f: X°X — X such that

K)o f =0l : K(n).2*X — K(n).X,
and f € End.(X) is central and unique up to nilpotence. Moreover, the center Z(End, X) = Z/(p*)[v,]

up to nilpotence for some k, in that there is a map between the two rings whose kernel and cokernel are
nilpotent.

Example 2.8 (Adams). Let p > 2. We let V(0) be the Moore spectrum S° U, e!. Here ¢ = 1, meaning that
there is a nonzero map

vy : 22DV (0) = V(0).

In particular, for any ¢ we get a nonzero map oy : S?*®~1 — S given by including S?**~1 as the bottom
cell of 2P~V (0), applying v}, and collapsing the bottom cell of V'(0). For each ¢, ay is an element of order
p in im J. This was the first example of an infinite family of elements of 7,S! For more see Adams, J(x)
1V, Topology 1966.



3. CHROMATIC CONVERGENCE 3

3 Chromatic convergence

Let E be a homology theory. A spectrum Z is E-local if [A, Z] = 0 whenever E,A =0. A map X — LgX
is an F-localization if it is an E,-isomorphism and Ly X is E-local.

Theorem 3.1 (Bousfield). A functor sending each spectrum X to an E.-localization of X always exists.

Let Ln,X = LgmX = Lgo)v-.vkm)X (the second equality is a theorem). There are maps L, X —
L, 1 X, and if X is a finite CW-spectrum, X — holim L, X is an HZ,)-localization. This is Hopkins-
Ravenel chromatic convergence. Also,

| |

L, 1 X —— LnflLK(n)X

is a homotopy pullback square. The fibers along the vertical maps are M, X = M,L K(n)X, the monochro-
matic piece.

4 The Adams-Novikov Spectral Sequence
Let G; = E(Ry, F1) and Gy = E(Ra, F») for Fy, F; Landweber exact. By the LEFT, (G;).G2 represents

S — {(fl R — S, f2 Ry — S,¢ : f*Fl E) g*Fg)}
Letting Go = MU, (G1).MU represents
S—={(f: Ry — S,Z an FGL over S, ¢ : f.F3 — E.

Letting both be MU, (MU),MU represents the set of isomorphisms of FGLs!

Thus the pair (MU,, MU, MU) represents the functor sending a ring S to the groupoid of FGLs over S
and their isomorphisms. This is called an affine groupoid scheme, and its representing object a Hopf
algebroid, by way of analogy with Hopf algebras representing affine group schemes.

In general, (E., E.FE) is a Hopf algebroid for any Landweber exact theory E, though we will focus on
E=MU.

The axioms for a Hopf algebroid are induced by the axioms for a groupoid — indeed, it helps to just
think of MU, and MU,MU as the objects and morphisms of a groupoid. For example, there are ‘source
and target’ maps nr,ng : MU, = MU,MU. Likewise, there are ‘composition,’ ‘identity’ and ‘inverse’ maps,
and these must satisfy a bunch of diagrams. For details, see Appendix 2 of Ravenel’s green book.

If X is any spectrum, there is a map

T (MUANX) —7m,(MUASOAX) —— 7, (MU A MU A X)

-

MU, X ; MU,MU ®yp. MU, X.
X

This makes MU, X a comodule over the Hopf algebroid (MU, MU, MU). Another way to say this is hat
MU,X is a quasi-coherent sheaf on the affine groupoid scheme of FGLs.

The map [X,Y] — Hompy, vy (MU X, MU,Y) (the right-hand side is maps of comodules) extends to
the Adams-Novikov spectral sequence

Ey' = Extyy o (S MUX, MU,Y) = [S'7°X, Ly Y.

This is a second-quadrant spectral sequence, so convergence is an issue. However, localization is not: it is
a theorem that LY only depends on Ey, so that Ly;yY = LyzY, which is just Y if Y is connective. In
particular, if Y is connective and X = S, the SS converges to m_(Y).!

1In the following two examples, the note-taker lost track of what was going on, and apologizes in advance for the resulting
opacity.



Example 4.1. (E,).E, = Hom(G,, (E,).), where G,, = Aut(F,»,T',,) and T, is the height n formal group.
We have a spectral sequence
Ey' = H*(Gp, (En)iX) = m—s L) X.

Example 4.2. Let p > 2. For * > 0, there is a square

Extyyp o (S MU, MU.,) () — H'(Z), (E.).

| :

(me—18%)(p) — > m—1Lg(1)S

Gy

0

which detects the image of J.



