Lecture 1: An overview of chromatic homotopy theory

Paul Goerss

Transcribed by Paul VanKoughnett

1 Complex oriented cohomology theories and formal group laws

Let E be a commutative ring spectrum and $q: V \to X$ a \mathbb{C}^n -bundle. We let V_0 be the complement of the zero section of $V, F \cong \mathbb{C}^n$ a fiber, F_0 the complement of 0 in F. A **complex orientation** or **Thom class** for E is an element $v \in E^{2n}(V, V_0)$ such that under the composition $E^{2n}(V, V_0) \to E^{2n}(F, F_0) \cong E^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\}) \cong E^0, v$ gets sent to a unit of the ring $\pi_0 E$. The **Euler class** of v is a class $e(v) \in \tilde{E}^{2n}(X)$ such that $q^*(e(v))$ is the image of v in $E^{2n}(V)$.

Using the Gysin sequence, it can be shown that $E^*\mathbb{C}P^{\infty} \cong E^*[[e(\zeta)]]$, where ζ is the topological line bundle. (Here and afterwards, we write E^* for the ring π_*E .)

This allows us to construct a formal group law from any E. Namely, if ξ_1 and ξ_2 are two line bundles over a space X, then $e(\xi_1 \otimes \xi_2) = F_E(e(\xi_1), e(\xi_2))$, where F_E is a power series over E^* in two variables. We also write this as $e(\xi_1) +_{F_E} e(\xi_2)$. Now, by the standard properties of the tensor product such as associativity and commutativity up to isomorphism, the operation described is a smooth 1-parameter formal Lie group with a coordinate – in other words, a **formal group law**, or **FGL**.

If we change the choice of Thom class, we also change the Euler classes and thus the FGL. If e and e' are two choices of Euler class maps and F and F' the associated FGLs, then e and e' will satisfy a relation $e'(\xi) = \phi(e(\xi))$, where $\phi(x) \in E^*[[x]]$ satisfying the following two conditions:

- $\phi(0) = 0$, since ϕ must be in the augmentation ideal of $E^*[[x]]$, and
- $\phi'(0)$ is a unit, since the Thom class must still be sent to a unit in E^0 .

Thus, ϕ is of the form

$$\phi(x) = a_0 x + a_1 x^2 + a_2 x^3 \cdots$$

with a_0 a unit (note the odd indexing), and we have

$$\phi(x +_F y) = \phi(x) +_F \phi(y)$$

Such a ϕ is called an **isomorphism** of FGLs. (If $a_0 = 1$, it is a **strict isomorphism**.)

There is a category (indeed, a groupoid) of FGLs and isomorphisms over a fixed ring. At this point, there are basically three examples available to us.

- 1. $H\mathbb{Q}^*$, ordinary cohomology. The Chern class of a tensor product of line bundles is just the sum of their Chern classes, so $x +_F y$ is just x + y.
- 2. K^* , complex K-theory. The Euler class is given by $e(\xi) = \beta(\xi 1)$ where $\beta \in K^2$ is the Bott element. Thus $x +_F y = x +_F y + \beta xy$.

2bis Real K-theory KO^* is not complex orientable.

3. MU^* , complex cobordism. Surprisingly, the coefficient ring both has a simple structure and represents the FGLs functor, in the sense given by the following theorem.

Theorem 1.1 (Lazard-Quillen). There is a commutative ring L, the **Lazard ring**, and an FGL F_u over L, such that there is a natural isomorphism $\text{Hom}(L, R) \cong \{FGLs \text{ over } R\}$, given by sending a map $f: L \to R$ to f_*F_u . Moreover, there is a non-canonical isomorphism $L \cong \mathbb{Z}[x_1, x_2, \ldots]$. Finally, $MU^* \cong L$, again non-canonically, but with any choice of orientation giving an isomorphism.

2 Height and Landweber exactness

Fix a prime p, a ring R, and an FGL F over R. We define

$$[p](x) = \underbrace{x +_F \cdots +_F x}_{p \text{ times}} = px + \cdots$$

Mod p, this is a power series in x^p , of the form $v_1x^p + \cdots$ for some $v_1 \in R$. Mod (v_1, p) , we get a power series in x^{p^2} , of the form $v_2x^{p^2} + \cdots$, and so on. We thus define elements $v_n \in R$ for each $n \in \mathbb{N}$.

Definition 2.1. F has height $n \ge 1$ if $p = v_1 = \cdots = v_{n-1} = 0$ and v_n is a unit. (In particular, R must have characteristic p.)

F is **Landweber exact** if p, v_1, v_2, \cdots is a regular sequence. This means that each element in the sequence is a nonzerodivisor mod the previous elements.

Theorem 2.2 (Lazard). If R is an algebraically closed field of characteristic p, then two FGLs are isomorphic iff they have the same height.

Theorem 2.3 (Landweber exact functor theorem). If F is a Landweber exact FGL over a ring R, then the functor

$$X \mapsto R \otimes_{MU_*} MU_*X_*$$

is a homology theory, written $E(R, F)_*X$, and $E(R, F)_* \cong R_*$. (Here the tensor product is computed using the map $MU_* \to R$ determined by F.)

Example 2.4. Let $R = \mathbb{Z}_{(p)}[v_1, \ldots, v_n^{\pm 1}]$, and choose an FGL F over R such that

$$[p]_{F}(x) = px +_{F} v_{1}x^{p} +_{F} \dots +_{F} v_{n}x^{p^{n}}$$

for some n. (That such an F exists is guaranteed by the theory of p-typical FGLs, on which presumably more later.) Then $E(R, F)_*$ is **Johnson-Wilson homology**, written $E(n)_*$.

Example 2.5. Morava *K*-theory is a sequence of homology theories with $K(n)_* = \mathbb{F}_p[v_n^{\pm 1}]$ and $[p]_F(x) = v_n x^{p^n}$. These are 'field theories' – every graded module is free, the Künneth map is an isomorphism, and so on.

Example 2.6. Morava *E*-theory is a sequence of homology theories with $(E_n)_* = w(\mathbb{F}_{p^n})[[\mu_1, \ldots, \mu_{n-1}]][\mu^{\pm 1}],$ with μ_1, \ldots, μ_{n-1} in degree zero. Here *w* is the Witt vector functor. For example, $w(\mathbb{F}_p) = \mathbb{Z}_p$.

Theorem 2.7 (Hopkins-Smith). Let X be a finite CW-spectrum and $K(n-1)_*X = 0$. Then for some t, for $s = 2t(p^n - 1)$, there exists a nonzero map $f : \Sigma^s X \to X$ such that

$$K(n)_* f = v_n^t : K(n)_* \Sigma^* X \to K(n)_* X,$$

and $f \in \operatorname{End}_*(X)$ is central and unique up to nilpotence. Moreover, the center $Z(\operatorname{End}_*X) \cong \mathbb{Z}/(p^k)[v_n]$ up to nilpotence for some k, in that there is a map between the two rings whose kernel and cokernel are nilpotent.

Example 2.8 (Adams). Let p > 2. We let V(0) be the Moore spectrum $S^0 \cup_p e^1$. Here t = 1, meaning that there is a nonzero map

$$v_1: \Sigma^{2(p-1)}V(0) \to V(0).$$

In particular, for any t we get a nonzero map $\alpha_t : S^{2t(p-1)} \to S^1$ given by including $S^{2t(p-1)}$ as the bottom cell of $\Sigma^{2(p-1)}V(0)$, applying v_1^t , and collapsing the bottom cell of V(0). For each t, α_t is an element of order p in im J. This was the first example of an infinite family of elements of $\pi_*S!$ For more see Adams, J(x) IV, Topology 1966.

3 Chromatic convergence

Let *E* be a homology theory. A spectrum *Z* is *E*-local if [A, Z] = 0 whenever $E_*A = 0$. A map $X \to L_E X$ is an *E*-localization if it is an E_* -isomorphism and $L_E X$ is *E*-local.

Theorem 3.1 (Bousfield). A functor sending each spectrum X to an E_* -localization of X always exists.

Let $L_n X = L_{E(n)} X = L_{K(0) \lor \cdots \lor K(n)} X$ (the second equality is a theorem). There are maps $L_n X \to L_{n-1}X$, and if X is a finite CW-spectrum, $X \to \text{holim } L_n X$ is an $H\mathbb{Z}_{(p)}$ -localization. This is **Hopkins-Ravenel chromatic convergence**. Also,

is a homotopy pullback square. The fibers along the vertical maps are $M_n X \xrightarrow{\sim} M_n L_{K(n)} X$, the **monochro-matic piece**.

4 The Adams-Novikov Spectral Sequence

Let $G_1 = E(R_1, F_1)$ and $G_2 = E(R_2, F_2)$ for F_1 , F_2 Landweber exact. By the LEFT, $(G_1)_*G_2$ represents

 $S \mapsto \{(f_1 : R_1 \to S, f_2 : R_2 \to S, \phi : f_*F_1 \stackrel{\cong}{\to} g_*F_2)\}.$

Letting $G_2 = MU$, $(G_1)_*MU$ represents

$$S \mapsto \{(f: R_1 \to S, \Xi \text{ an FGL over } S, \phi: f_*F_1 \to \Xi.\}$$

Letting both be MU, $(MU)_*MU$ represents the set of isomorphisms of FGLs!

Thus the pair (MU_*, MU_*MU) represents the functor sending a ring S to the groupoid of FGLs over S and their isomorphisms. This is called an **affine groupoid scheme**, and its representing object a **Hopf** algebroid, by way of analogy with Hopf algebras representing affine group schemes.

In general, (E_*, E_*E) is a Hopf algebroid for any Landweber exact theory E, though we will focus on E = MU.

The axioms for a Hopf algebroid are induced by the axioms for a groupoid – indeed, it helps to just think of MU_* and MU_*MU as the objects and morphisms of a groupoid. For example, there are 'source and target' maps $\eta_L, \eta_R : MU_* \to MU_*MU$. Likewise, there are 'composition,' 'identity' and 'inverse' maps, and these must satisfy a bunch of diagrams. For details, see Appendix 2 of Ravenel's green book.

If X is any spectrum, there is a map

$$\pi_*(MU \wedge X) \xrightarrow{\cong} \pi_*(MU \wedge S^0 \wedge X) \longrightarrow \pi_*(MU \wedge MU \wedge X)$$

$$\downarrow \cong$$

$$MU_*X \xrightarrow{\psi_X} MU_*MU \otimes_{MU_*} MU_*X.$$

This makes MU_*X a **comodule** over the Hopf algebroid (MU_*, MU_*MU) . Another way to say this is hat MU_*X is a quasi-coherent sheaf on the affine groupoid scheme of FGLs.

The map $[X, Y] \to \operatorname{Hom}_{MU_*MU}(MU_*X, MU_*Y)$ (the right-hand side is maps of comodules) extends to the Adams-Novikov spectral sequence

$$E_2^{s,t} = \operatorname{Ext}_{MU_*MU}^s(\Sigma^t MU_*X, MU_*Y) \Rightarrow [\Sigma^{t-s}X, L_{MU}Y]$$

This is a second-quadrant spectral sequence, so convergence is an issue. However, localization is not: it is a theorem that $L_E Y$ only depends on E_0 , so that $L_{MU}Y = L_{H\mathbb{Z}}Y$, which is just Y if Y is connective. In particular, if Y is connective and X = S, the SS converges to $\pi_{t-s}(Y)$.¹

 $^{^{1}}$ In the following two examples, the note-taker lost track of what was going on, and apologizes in advance for the resulting opacity.

Example 4.1. $(E_n)_*E_n = \operatorname{Hom}(\mathbb{G}_n, (E_n)_*)$, where $\mathbb{G}_n = \operatorname{Aut}(\mathbb{F}_{p^n}, \Gamma_n)$ and Γ_n is the height *n* formal group. We have a spectral sequence

$$E_2^{s,t} = H^s(\mathbb{G}_n, (E_n)_t X) \Rightarrow \pi_{t-s} L_{K(n)} X.$$

Example 4.2. Let p > 2. For * > 0, there is a square

which detects the image of J.