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1 Complex oriented cohomology theories and formal group laws

Let E be a commutative ring spectrum and q : V → X a Cn-bundle. We let V0 be the complement of the zero
section of V , F ∼= Cn a fiber, F0 the complement of 0 in F . A complex orientation or Thom class for E is
an element v ∈ E2n(V, V0) such that under the composition E2n(V, V0)→ E2n(F, F0) ∼= E2n(Cn,Cn−{0}) ∼=
E0, v gets sent to a unit of the ring π0E. The Euler class of v is a class e(v) ∈ Ẽ2n(X) such that q∗(e(v))
is the image of v in E2n(V ).

Using the Gysin sequence, it can be shown that E∗CP∞ ∼= E∗[[e(ζ)]], where ζ is the topological line
bundle. (Here and afterwards, we write E∗ for the ring π∗E.)

This allows us to construct a formal group law from any E. Namely, if ξ1 and ξ2 are two line bundles over
a space X, then e(ξ1 ⊗ ξ2) = FE(e(ξ1), e(ξ2)), where FE is a power series over E∗ in two variables. We also
write this as e(ξ1) +FE

e(ξ2). Now, by the standard properties of the tensor product such as associativity
and commutativity up to isomorphism, the operation described is a smooth 1-parameter formal Lie group
with a coordinate – in other words, a formal group law, or FGL.

If we change the choice of Thom class, we also change the Euler classes and thus the FGL. If e and e′

are two choices of Euler class maps and F and F ′ the associated FGLs, then e and e′ will satisfy a relation
e′(ξ) = φ(e(ξ)), where φ(x) ∈ E∗[[x]] satisfying the following two conditions:

• φ(0) = 0, since φ must be in the augmentation ideal of E∗[[x]], and

• φ′(0) is a unit, since the Thom class must still be sent to a unit in E0.

Thus, φ is of the form
φ(x) = a0x+ a1x

2 + a2x
3 · · ·

with a0 a unit (note the odd indexing), and we have

φ(x+F y) = φ(x) +F φ(y).

Such a φ is called an isomorphism of FGLs. (If a0 = 1, it is a strict isomorphism.)
There is a category (indeed, a groupoid) of FGLs and isomorphisms over a fixed ring. At this point,

there are basically three examples available to us.

1. HQ∗, ordinary cohomology. The Chern class of a tensor product of line bundles is just the sum of
their Chern classes, so x+F y is just x+ y.

2. K∗, complex K-theory. The Euler class is given by e(ξ) = β(ξ− 1) where β ∈ K2 is the Bott element.
Thus x+F y = x+F y + βxy.

2bis Real K-theory KO∗ is not complex orientable.

3. MU∗, complex cobordism. Surprisingly, the coefficient ring both has a simple structure and represents
the FGLs functor, in the sense given by the following theorem.

Theorem 1.1 (Lazard-Quillen). There is a commutative ring L, the Lazard ring, and an FGL Fu over L,
such that there is a natural isomorphism Hom(L,R) ∼= {FGLs over R}, given by sending a map f : L → R
to f∗Fu. Moreover, there is a non-canonical isomorphism L ∼= Z[x1, x2, . . . ]. Finally, MU∗ ∼= L, again
non-canonically, but with any choice of orientation giving an isomorphism.
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2 Height and Landweber exactness

Fix a prime p, a ring R, and an FGL F over R. We define

[p](x) = x+F · · ·+F x︸ ︷︷ ︸
p times

= px+ · · · .

Mod p, this is a power series in xp, of the form v1x
p + · · · for some v1 ∈ R. Mod (v1, p), we get a power

series in xp
2

, of the form v2x
p2 + · · · , and so on. We thus define elements vn ∈ R for each n ∈ N.

Definition 2.1. F has height n ≥ 1 if p = v1 = · · · = vn−1 = 0 and vn is a unit. (In particular, R must
have characteristic p.)

F is Landweber exact if p, v1, v2, · · · is a regular sequence. This means that each element in the
sequence is a nonzerodivisor mod the previous elements.

Theorem 2.2 (Lazard). If R is an algebraically closed field of characteristic p, then two FGLs are isomorphic
iff they have the same height.

Theorem 2.3 (Landweber exact functor theorem). If F is a Landweber exact FGL over a ring R, then the
functor

X 7→ R⊗MU∗ MU∗X,

is a homology theory, written E(R,F )∗X, and E(R,F )∗ ∼= R∗. (Here the tensor product is computed using
the map MU∗ → R determined by F .)

Example 2.4. Let R = Z(p)[v1, . . . , v
±1
n ], and choose an FGL F over R such that

[p]F (x) = px+F v1x
p +F · · ·+F vnx

pn

for some n. (That such an F exists is guaranteed by the theory of p-typical FGLs, on which presumably
more later.) Then E(R,F )∗ is Johnson-Wilson homology, written E(n)∗.

Example 2.5. Morava K-theory is a sequence of homology theories with K(n)∗ = Fp[v±1n ] and [p]F (x) =
vnx

pn . These are ‘field theories’ – every graded module is free, the Künneth map is an isomorphism, and so
on.

Example 2.6. Morava E-theory is a sequence of homology theories with (En)∗ = w(Fpn)[[µ1, . . . , µn−1]][µ±1],
with µ1, . . . , µn−1 in degree zero. Here w is the Witt vector functor. For example, w(Fp) = Zp.

Theorem 2.7 (Hopkins-Smith). Let X be a finite CW-spectrum and K(n − 1)∗X = 0. Then for some t,
for s = 2t(pn − 1), there exists a nonzero map f : ΣsX → X such that

K(n)∗f = vtn : K(n)∗Σ
sX → K(n)∗X,

and f ∈ End∗(X) is central and unique up to nilpotence. Moreover, the center Z(End∗X) ∼= Z/(pk)[vn]
up to nilpotence for some k, in that there is a map between the two rings whose kernel and cokernel are
nilpotent.

Example 2.8 (Adams). Let p > 2. We let V (0) be the Moore spectrum S0 ∪p e1. Here t = 1, meaning that
there is a nonzero map

v1 : Σ2(p−1)V (0)→ V (0).

In particular, for any t we get a nonzero map αt : S2t(p−1) → S1 given by including S2t(p−1) as the bottom
cell of Σ2(p−1)V (0), applying vt1, and collapsing the bottom cell of V (0). For each t, αt is an element of order
p in im J . This was the first example of an infinite family of elements of π∗S! For more see Adams, J(x)
IV, Topology 1966.
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3 Chromatic convergence

Let E be a homology theory. A spectrum Z is E-local if [A,Z] = 0 whenever E∗A = 0. A map X → LEX
is an E-localization if it is an E∗-isomorphism and LEX is E-local.

Theorem 3.1 (Bousfield). A functor sending each spectrum X to an E∗-localization of X always exists.

Let LnX = LE(n)X = LK(0)∨···∨K(n)X (the second equality is a theorem). There are maps LnX →
Ln−1X, and if X is a finite CW-spectrum, X → holimLnX is an HZ(p)-localization. This is Hopkins-
Ravenel chromatic convergence. Also,

LnX //

��

LK(n)X

��
Ln−1X // Ln−1LK(n)X

is a homotopy pullback square. The fibers along the vertical maps are MnX
∼→MnLK(n)X, the monochro-

matic piece.

4 The Adams-Novikov Spectral Sequence

Let G1 = E(R1, F1) and G2 = E(R2, F2) for F1, F2 Landweber exact. By the LEFT, (G1)∗G2 represents

S 7→ {(f1 : R1 → S, f2 : R2 → S, φ : f∗F1

∼=→ g∗F2)}.

Letting G2 = MU , (G1)∗MU represents

S 7→ {(f : R1 → S,Ξ an FGL over S, φ : f∗F1 → Ξ.

Letting both be MU , (MU)∗MU represents the set of isomorphisms of FGLs!
Thus the pair (MU∗,MU∗MU) represents the functor sending a ring S to the groupoid of FGLs over S

and their isomorphisms. This is called an affine groupoid scheme, and its representing object a Hopf
algebroid, by way of analogy with Hopf algebras representing affine group schemes.

In general, (E∗, E∗E) is a Hopf algebroid for any Landweber exact theory E, though we will focus on
E = MU .

The axioms for a Hopf algebroid are induced by the axioms for a groupoid – indeed, it helps to just
think of MU∗ and MU∗MU as the objects and morphisms of a groupoid. For example, there are ‘source
and target’ maps ηL, ηR : MU∗ →MU∗MU . Likewise, there are ‘composition,’ ‘identity’ and ‘inverse’ maps,
and these must satisfy a bunch of diagrams. For details, see Appendix 2 of Ravenel’s green book.

If X is any spectrum, there is a map

π∗(MU ∧X)
∼= // π∗(MU ∧ S0 ∧X) // π∗(MU ∧MU ∧X)

∼=
��

MU∗X
ψX

// MU∗MU ⊗MU∗ MU∗X.

This makes MU∗X a comodule over the Hopf algebroid (MU∗,MU∗MU). Another way to say this is hat
MU∗X is a quasi-coherent sheaf on the affine groupoid scheme of FGLs.

The map [X,Y ] → HomMU∗MU (MU∗X,MU∗Y ) (the right-hand side is maps of comodules) extends to
the Adams-Novikov spectral sequence

Es,t2 = ExtsMU∗MU (ΣtMU∗X,MU∗Y )⇒ [Σt−sX,LMUY ].

This is a second-quadrant spectral sequence, so convergence is an issue. However, localization is not: it is
a theorem that LEY only depends on E0, so that LMUY = LHZY , which is just Y if Y is connective. In
particular, if Y is connective and X = S, the SS converges to πt−s(Y ).1

1In the following two examples, the note-taker lost track of what was going on, and apologizes in advance for the resulting
opacity.
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Example 4.1. (En)∗En = Hom(Gn, (En)∗), where Gn = Aut(Fpn ,Γn) and Γn is the height n formal group.
We have a spectral sequence

Es,t2 = Hs(Gn, (En)tX)⇒ πt−sLK(n)X.

Example 4.2. Let p > 2. For ∗ > 0, there is a square

Ext1MU∗MU (Σ∗MU∗,MU∗)(p)
∼= // H1(Z×p , (E∗)∗ G1

(π∗−1S
0)(p) //

OO

π∗−1LK(1)S
0

∼=

OO

which detects the image of J .


