Lecture 3: $M U$ and complex cobordism

Philip Egger
Transcribed by Paul VanKoughnett

Definition 1. Let X be a space and M_{1}, M_{2} two almost complex n-manifolds. (This means that we have chosen a reduction of the structure group of the stable tangent bundle to the unitary group.) Let $f_{1}: M_{1} \rightarrow X, f_{2}: M_{2} \rightarrow X$ be two continuous functions. Then f_{1} and f_{2} are bordant if there exists an almost complex $(n+1)$-manifold W with $\partial W=M_{1} \sqcup M_{2}$ and a map $H: W \rightarrow X$ such that $\left.H\right|_{\partial W}=f_{1} \sqcup f_{2}$.

We define $M U_{n}(X)$ to be the set of maps from n-manifolds into X modulo bordism. [Evidently this is an equivalence relation: a cylinder gives reflexivity, symmetry is clear, and gluing bordisms gives transitivity.]
$M U_{*}(X)$ has a graded ring structure, where addition is given by disjoint union (or equivalently, connect sum), and multiplication is given by Cartesian product.

The most obvious case to consider is when $X=*$. Then we can ignore the maps, and two manifolds are bordant iff they are the boundary of a manifold, which is just the ordinary bordism relation. We have calculated $M U_{*}(*)=M U_{*}$.

Theorem 2 (Thom-Pontryagin, Milnor). $M U_{*} \otimes \mathbb{Q}$ is a polynomial ring generated by the classes of $\mathbb{C} P^{n}$ for $n \geq 1$. In fact, $M U_{*}=\mathbb{Z}\left[t_{n}:\left|t_{n}\right|=2 n\right]$.

We can choose t_{n} such that $(n+1) t_{n}=\left[\mathbb{C} P^{n}\right]$. Note that this ring is concentrated in even degrees: everything odd is nilbordant!

Now, recall that he Lazard ring L is isomorphic to $\mathbb{Z}\left[x_{n}:\left|x_{n}\right|=2 n\right]$. There's no canonical isomorphism $L \cong M U_{*}$, but choosing an orientation for $M U_{*}$ gives you one. Let's go into this in more detail.

Definition 3. A multiplicative cohomology theory E^{*} is complex orientable if for $i^{*}: \mathbb{C} P^{1} \hookrightarrow \mathbb{C} P^{\infty}$, $i^{*}: E^{2} \mathbb{C} P^{\infty} \rightarrow E^{2} \mathbb{C} P^{1}$ is surjective. Equivalently, for every complex n-plane bundle V, we can choose a Thom class $u \in E^{2 n}\left(V, V_{0}\right)$ such that the image of u in $\pi_{*} E$ under the Thom isomorphism is a generator (where V_{0} is the zero section). A choice of such a generator and a Thom class for all V getting sent to that generator is a complex orientation.

We briefly define the cohomology theory $M U^{*}$ on k-manifolds X. For Z a $(k-n)$-manifold, a complexoriented map $Z \rightarrow X$ is a proper map $Z \rightarrow X$ with an almost complex structure on its stable normal bundle. $M U^{n}(X)$ is the set of complex-oriented maps from $(k-n)$-manifolds to X modulo the cobordism relation: two maps $Z_{1} \rightarrow X, Z_{2} \rightarrow X$ are cobordant if there is an $(k-n+1)$-manifold W and a map $W \rightarrow X \times \mathbb{R}$ such that $Z_{1} \rightarrow X$ and $Z_{2} \rightarrow X$ are respectively the fibers over 0 and 1.

It is now easy to see that $M U^{*}$ is complex orientable. [Indeed, a generator θ of $M U^{2} \mathbb{C} P^{1}$ is given by any $\operatorname{map} * \rightarrow \mathbb{C} P^{1}$, which is equivalently a complex line in \mathbb{C}^{2}; extending this successively to a hyperplane in each $\mathbb{C} P^{n}$ by throwing in the new basis vectors gives an element of $M U^{2} \mathbb{C} P^{\infty}$ that evidently pulls back to θ.]

Theorem 4 (Quillen, [2]). Every choice of orientation of $M U_{*}$ corresponds to a formal group law over $M U_{*}$, which in turn corresponds to an isomorphism $\phi: L \xrightarrow{\sim} M U_{*}$.

Definition 5. For $F=F(x, y)$ a formal group law over a torsion-free ring R, the logarithm of F is

$$
\log _{F}(x)=\int_{0}^{x} \frac{d t}{\frac{\partial F}{\partial y}(t, 0)} \in \mathbb{Q} \otimes R[[x]]
$$

Proposition 6. $\log _{F}\left(x+{ }_{F} y\right)=\log _{F}(x)+\log _{F}(y)$.
This can be proved by messing around with power series.
Proposition 7. There is an orientation on $M U$ such that

$$
\log _{F}(x)=\sum_{n \geq 0} \frac{\left[\mathbb{C} P^{n}\right]}{n+1} x^{n+1}
$$

Proof of Quillen's theorem. Let F_{u} be the universal formal group law over L, F the above formal group law over $M U_{*}, \phi: L \rightarrow M U_{*}$ the map classifying this FGL. We want to show that ϕ is an isomorphism. (It is a lemma that there is an isomorphism of FGLs between any two FGL over $M U_{*}$, so it suffices to prove Quillen's theorem for the single case where F is the orientation given by Proposition 7.)

First, we show $\phi \otimes \mathbb{Q}$ is an isomorphism. $F_{u} \otimes \mathbb{Q}$ has logarithm $\sum_{n \geq 0} \frac{p_{n}}{n+1} x^{n+1}$ for some p_{n}, and $F \otimes \mathbb{Q}$ has logarithm $\sum_{n \geq 0} \frac{\left[\mathbb{C} P^{n}\right]}{n+1} x^{n+1}$. Thus the map must send p_{n} to $\left[\mathbb{C} P^{n}\right]$, meaning that the degree of p_{n} is $2 n$, and it is then clear that the p_{n} are generators of L.

Second, we show that ϕ is surjective. Consider the Milnor hypersuraces $H_{i j} \subseteq \mathbb{C} P^{i} \times \mathbb{C} P^{j}$ for $i \leq j$, which are cut out by the respective equations $x_{0} y_{0}+\cdots+x_{i} y_{i}=0$. We claim that these are in the image of ϕ and they generate $M U_{*}$. Indeed, let $f_{i}: H_{i j} \rightarrow \mathbb{C} P^{i}, H_{i j} \rightarrow \mathbb{C} P^{j}$ be given by inclusion into $\mathbb{C} P^{i} \times \mathbb{C} P^{j}$ followed by projection, and let ξ_{i} and ξ_{j} be the pullbacks of the tautological line bundles along f_{i} and f_{j} respectively. Then $\xi_{i} \otimes \xi_{j}$ is a line bundle on $H_{i j}$ which is classified by some map $f: H_{i j} \rightarrow \mathbb{C} P^{\infty}$. Let $\pi: H_{i j} \rightarrow *$.

There are now three substeps. First, there is a covariant 'pushforward' map $\pi_{*}: M U^{*}\left(H_{i j}\right) \rightarrow M U^{*}$ such that $\pi_{*} c_{1}^{M U^{*}}\left(\xi_{i} \otimes \xi_{j}\right)=\left[H_{i j}\right]$. If have a map $f: Y \rightarrow X$ and view $M U^{*}(Y)$ as the set of complex-oriented maps $Z \rightarrow Y$ modulo cobordism, then this pushforward f_{*} is defined by simply postcomposing these maps with f. Note that this raises the degree by $\operatorname{dim} X-\operatorname{dim} Y$, and it is not a ring homomorphism, though it is an $M U^{*}$-module homomorphism, as $Y \rightarrow X$ is a map 'over the point.'

Second, $\left[H_{i j}\right]$ is in the image of ϕ. We have

$$
\begin{aligned}
{\left[H_{i j}\right] } & =\pi_{*}\left(F\left(c_{1}\left(\xi_{i}\right), c_{1}\left(\xi_{j}\right)\right)\right) \\
& =\pi_{*}\left(\sum_{n, m} \phi\left(a_{n m}\right) c_{1}\left(\xi_{1}\right)^{n} c_{1}\left(\xi_{j}\right)^{m}\right) \\
& =\sum_{n, m} \phi\left(a_{n m}\right) \pi_{*}\left(c_{1}\left(\xi_{1}\right)^{n} c_{1}\left(\xi_{j}\right)^{m}\right) \\
& =\sum_{n, m} \phi\left(a_{n m}\right)\left[\mathbb{C} P^{n-i}\right]\left[\mathbb{C} P^{n-j}\right] .
\end{aligned}
$$

Third, the classes $\left[H_{i j}\right]$ generate $M U_{*}$. To do this one must develop a theory of Chern numbers [1].
Finally, we have a map $L \rightarrow M U_{*}$ which is surjective and an isomorphism when tensored with \mathbb{Q}, and L is torsion free. Therefore, this is an isomorphism.

We conclude by constructing the spectrum $M U . M U(n)$ is the Thom space of the tautological bundle γ_{n} over $B U(n)$. If $i: B U(n) \rightarrow B U(n+1)$ is the standard inclusion, then $i^{*} \gamma_{n+1} \cong \gamma_{n} \oplus 1$ has Thom space $\Sigma^{2} M U(n)$. ('These are the complex 1's.') Thus i induces a map $\Sigma^{2} M U(n) \rightarrow M U(n+1)$, and these define a spectrum (for example, we can let $\left.(M U)_{2 n}=M U(n),(M U)_{2 n+1}=\Sigma M U(n)\right)$. By the Thom-Pontryagin theorem, this is in fact the desired spectrum $M U$.

Bibliography

[1] J. Milnor and J. Stasheff, Characteristic Classes, Annals of Mathematics Studies 76, Princeton University Press, Princeton, 1974.
[2] D. Quillen, 'On the formal group laws of unoriented and complex cobordism theory,' Bulletin of the American Mathematical Society 75 (6), 1293-1298.

