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Definition 1. Let X be a space and M;, M two almost complex n-manifolds. (This means that we
have chosen a reduction of the structure group of the stable tangent bundle to the unitary group.) Let
fi: My — X, fo : My — X be two continuous functions. Then f; and fs are bordant if there exists an
almost complex (n 4+ 1)-manifold W with OW = M; UM, and a map H : W — X such that H|gw = f1 U fa.

We define MU,,(X) to be the set of maps from n-manifolds into X modulo bordism. [Evidently this is an
equivalence relation: a cylinder gives reflexivity, symmetry is clear, and gluing bordisms gives transitivity.]

MU, (X) has a graded ring structure, where addition is given by disjoint union (or equivalently, connect
sum), and multiplication is given by Cartesian product.

The most obvious case to consider is when X = *. Then we can ignore the maps, and two manifolds
are bordant iff they are the boundary of a manifold, which is just the ordinary bordism relation. We have
calculated MU, (%) = MU.,.

Theorem 2 (Thom-Pontryagin, Milnor). MU, ® Q is a polynomial ring generated by the classes of CP™
forn > 1. In fact, MU, = Z[t,, : |t,| = 2n].

We can choose t,, such that (n + 1)t, = [CP™]. Note that this ring is concentrated in even degrees:
everything odd is nilbordant!

Now, recall that he Lazard ring L is isomorphic to Z[z,, : |2,| = 2n]. There’s no canonical isomorphism
L = MU,, but choosing an orientation for MU, gives you one. Let’s go into this in more detail.

Definition 3. A multiplicative cohomology theory E* is complex orientable if for i* : CP' — CP>,
i* : E2CP> — E2?CP! is surjective. Equivalently, for every complex n-plane bundle V, we can choose a
Thom class u € E?"(V,V;) such that the image of u in 7, E under the Thom isomorphism is a generator
(where V} is the zero section). A choice of such a generator and a Thom class for all V' getting sent to that
generator is a complex orientation.

We briefly define the cohomology theory MU* on k-manifolds X. For Z a (k — n)-manifold, a complex-
oriented map Z — X is a proper map Z — X with an almost complex structure on its stable normal
bundle. MU™(X) is the set of complex-oriented maps from (k — n)-manifolds to X modulo the cobordism
relation: two maps Z; — X, Zs — X are cobordant if there is an (kK — n + 1)-manifold W and a map
W — X x R such that Z; — X and Zy — X are respectively the fibers over 0 and 1.

It is now easy to see that MU* is complex orientable. [Indeed, a generator 6 of MU?CP! is given by
any map * — CP?!, which is equivalently a complex line in C?; extending this successively to a hyperplane
in each CP™ by throwing in the new basis vectors gives an element of MU?CP> that evidently pulls back
to 6.]

Theorem 4 (Quillen, [2]). Ewvery choice of orientation of MU, corresponds to a formal group law over
MU.,, which in turn corresponds to an isomorphism ¢ : L = MU,.

Definition 5. For F' = F(z,y) a formal group law over a torsion-free ring R, the logarithm of F' is
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Proposition 6. logp(z +r y) = logg(r) + logx(y).
This can be proved by messing around with power series.

Proposition 7. There is an orientation on MU such that

cpr
logp(x) = Z %m"“.
n>0
Proof of Quillen’s theorem. Let F, be the universal formal group law over L, F' the above formal group law
over MU,, ¢ : L — MU, the map classifying this FGL. We want to show that ¢ is an isomorphism. (It
is a lemma that there is an isomorphism of FGLs between any two FGL over MU,, so it suffices to prove
Quillen’s theorem for the single case where F' is the orientation given by Proposition 7.)

First, we show ¢ ® Q is an isomorphism. F,, ® Q has logarithm ano nPJ:l 2"t for some p,, and F @ Q

has logarithm ano [giz]x"“. Thus the map must send p,, to [CP"], meaning that the degree of p,, is 2n,
and it is then clear that the p,, are generators of L.

Second, we show that ¢ is surjective. Consider the Milnor hypersuraces H;; C CP* x CPJ for i < j,
which are cut out by the respective equations xgyg + - -+ + x;y; = 0. We claim that these are in the image
of ¢ and they generate MU,. Indeed, let f; : H;; — CP*, H;; — CP7 be given by inclusion into CP? x CPJ
followed by projection, and let & and &; be the pullbacks of the tautological line bundles along f; and f;
respectively. Then & ® &; is a line bundle on H;; which is classified by some map f : H;; — CP>°. Let
I Hij —r k.

There are now three substeps. First, there is a covariant ‘pushforward’ map m. : MU*(H;;) - MU™* such
that m.c}?V" (& ® &) = [Hy;]. If have a map f: Y — X and view MU*(Y) as the set of complex-oriented
maps Z — Y modulo cobordism, then this pushforward f, is defined by simply postcomposing these maps
with f. Note that this raises the degree by dim X —dim Y, and it is not a ring homomorphism, though it is
an MU*-module homomorphism, as Y — X is a map ‘over the point.’

Second, [H;;] is in the image of ¢. We have

[Hij] = ma(F(c1(&), e1(85)))
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Third, the classes [H;;| generate MU,. To do this one must develop a theory of Chern numbers [1].
Finally, we have a map L — MU, which is surjective and an isomorphism when tensored with Q, and L
is torsion free. Therefore, this is an isomorphism. O

We conclude by constructing the spectrum MU. MU(n) is the Thom space of the tautological bundle
n over BU(n). If i : BU(n) — BU(n + 1) is the standard inclusion, then i*v,,11 2 7, @ 1 has Thom space
$2MU(n). (‘These are the complex 1’s.”) Thus i induces a map 3?MU (n) — MU (n + 1), and these define
a spectrum (for example, we can let (MU)s, = MU(n), (MU)sp+1 = XMU(n)). By the Thom-Pontryagin
theorem, this is in fact the desired spectrum MU.
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