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Definition 1. Let X be a space and M1, M2 two almost complex n-manifolds. (This means that we
have chosen a reduction of the structure group of the stable tangent bundle to the unitary group.) Let
f1 : M1 → X, f2 : M2 → X be two continuous functions. Then f1 and f2 are bordant if there exists an
almost complex (n+ 1)-manifold W with ∂W = M1tM2 and a map H : W → X such that H|∂W = f1tf2.

We define MUn(X) to be the set of maps from n-manifolds into X modulo bordism. [Evidently this is an
equivalence relation: a cylinder gives reflexivity, symmetry is clear, and gluing bordisms gives transitivity.]

MU∗(X) has a graded ring structure, where addition is given by disjoint union (or equivalently, connect
sum), and multiplication is given by Cartesian product.

The most obvious case to consider is when X = ∗. Then we can ignore the maps, and two manifolds
are bordant iff they are the boundary of a manifold, which is just the ordinary bordism relation. We have
calculated MU∗(∗) = MU∗.

Theorem 2 (Thom-Pontryagin, Milnor). MU∗ ⊗ Q is a polynomial ring generated by the classes of CPn

for n ≥ 1. In fact, MU∗ = Z[tn : |tn| = 2n].

We can choose tn such that (n + 1)tn = [CPn]. Note that this ring is concentrated in even degrees:
everything odd is nilbordant!

Now, recall that he Lazard ring L is isomorphic to Z[xn : |xn| = 2n]. There’s no canonical isomorphism
L ∼= MU∗, but choosing an orientation for MU∗ gives you one. Let’s go into this in more detail.

Definition 3. A multiplicative cohomology theory E∗ is complex orientable if for i∗ : CP 1 ↪→ CP∞,
i∗ : E2CP∞ → E2CP 1 is surjective. Equivalently, for every complex n-plane bundle V , we can choose a
Thom class u ∈ E2n(V, V0) such that the image of u in π∗E under the Thom isomorphism is a generator
(where V0 is the zero section). A choice of such a generator and a Thom class for all V getting sent to that
generator is a complex orientation.

We briefly define the cohomology theory MU∗ on k-manifolds X. For Z a (k−n)-manifold, a complex-
oriented map Z → X is a proper map Z → X with an almost complex structure on its stable normal
bundle. MUn(X) is the set of complex-oriented maps from (k− n)-manifolds to X modulo the cobordism
relation: two maps Z1 → X, Z2 → X are cobordant if there is an (k − n + 1)-manifold W and a map
W → X × R such that Z1 → X and Z2 → X are respectively the fibers over 0 and 1.

It is now easy to see that MU∗ is complex orientable. [Indeed, a generator θ of MU2CP 1 is given by
any map ∗ → CP 1, which is equivalently a complex line in C2; extending this successively to a hyperplane
in each CPn by throwing in the new basis vectors gives an element of MU2CP∞ that evidently pulls back
to θ.]

Theorem 4 (Quillen, [2]). Every choice of orientation of MU∗ corresponds to a formal group law over
MU∗, which in turn corresponds to an isomorphism φ : L

∼→MU∗.

Definition 5. For F = F (x, y) a formal group law over a torsion-free ring R, the logarithm of F is

logF (x) =

∫ x

0

dt
∂F
∂y (t, 0)

∈ Q⊗R[[x]].
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Proposition 6. logF (x+F y) = logF (x) + logF (y).

This can be proved by messing around with power series.

Proposition 7. There is an orientation on MU such that

logF (x) =
∑
n≥0

[CPn]

n+ 1
xn+1.

Proof of Quillen’s theorem. Let Fu be the universal formal group law over L, F the above formal group law
over MU∗, φ : L → MU∗ the map classifying this FGL. We want to show that φ is an isomorphism. (It
is a lemma that there is an isomorphism of FGLs between any two FGL over MU∗, so it suffices to prove
Quillen’s theorem for the single case where F is the orientation given by Proposition 7.)

First, we show φ⊗Q is an isomorphism. Fu ⊗Q has logarithm
∑

n≥0
pn

n+1x
n+1 for some pn, and F ⊗Q

has logarithm
∑

n≥0
[CPn]
n+1 x

n+1. Thus the map must send pn to [CPn], meaning that the degree of pn is 2n,
and it is then clear that the pn are generators of L.

Second, we show that φ is surjective. Consider the Milnor hypersuraces Hij ⊆ CP i × CP j for i ≤ j,
which are cut out by the respective equations x0y0 + · · · + xiyi = 0. We claim that these are in the image
of φ and they generate MU∗. Indeed, let fi : Hij → CP i, Hij → CP j be given by inclusion into CP i ×CP j

followed by projection, and let ξi and ξj be the pullbacks of the tautological line bundles along fi and fj
respectively. Then ξi ⊗ ξj is a line bundle on Hij which is classified by some map f : Hij → CP∞. Let
π : Hij → ∗.

There are now three substeps. First, there is a covariant ‘pushforward’ map π∗ : MU∗(Hij)→MU∗ such
that π∗c

MU∗

1 (ξi ⊗ ξj) = [Hij ]. If have a map f : Y → X and view MU∗(Y ) as the set of complex-oriented
maps Z → Y modulo cobordism, then this pushforward f∗ is defined by simply postcomposing these maps
with f . Note that this raises the degree by dimX − dimY , and it is not a ring homomorphism, though it is
an MU∗-module homomorphism, as Y → X is a map ‘over the point.’

Second, [Hij ] is in the image of φ. We have

[Hij ] = π∗(F (c1(ξi), c1(ξj)))

= π∗

(∑
n,m

φ(anm)c1(ξ1)nc1(ξj)
m

)
=
∑
n,m

φ(anm)π∗(c1(ξ1)nc1(ξj)
m)

=
∑
n,m

φ(anm)[CPn−i][CPn−j ].

Third, the classes [Hij ] generate MU∗. To do this one must develop a theory of Chern numbers [1].
Finally, we have a map L→MU∗ which is surjective and an isomorphism when tensored with Q, and L

is torsion free. Therefore, this is an isomorphism.

We conclude by constructing the spectrum MU . MU(n) is the Thom space of the tautological bundle
γn over BU(n). If i : BU(n)→ BU(n+ 1) is the standard inclusion, then i∗γn+1

∼= γn ⊕ 1 has Thom space
Σ2MU(n). (‘These are the complex 1’s.’) Thus i induces a map Σ2MU(n)→MU(n+ 1), and these define
a spectrum (for example, we can let (MU)2n = MU(n), (MU)2n+1 = ΣMU(n)). By the Thom-Pontryagin
theorem, this is in fact the desired spectrum MU .
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