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1. Introduction

My main references are [1], [2] and [3]. The goal of this talk is to define Morava E-theory En,
and to introduce a spectral sequence, due to Morava

Hs(Gn, (En)tX) =⇒ πt−sLK(n)X.

This spectral sequence, often called the homotopy fixed points spectral sequence is the key tool
in many of the K(n)-local computations.

2. Morava E-theory from the point of view of Landweber exactness

Let ζ be a primitive pn − 1 root of unity and

W (Fpn) = Zp[ζ].

The ring W (Fpn) is a complete local ring with maximal ideal (p), and

W (Fpn)/(p) ' Fpn .

Define a graded ring

(En)∗ = W (Fpn)[[u1, . . . , un−1]][u±1],

with |u| = −2 and |ui| = 0. Recall that

BP∗ = Z(p)[v1, v2, . . .],

|vi| = 2(pn − 1).

The universal p-typical formal group law FBP is defined by

[p]FBP (x) = px+FBP v1x
p +FBP . . .+FBP vnx

pn +FBP . . . .

There is a map

F : BP∗ → (En)∗

F (vi) :=

 uiu
1−pi 0 < i < n;

u1−pn i = n;
0 i > n.

This defines a graded p-typical formal group law F with p-series

[p]F = px+F u1u
1−pxp +F . . .+F un−1u

1−pn−1
xp

n−1
+F u

1−pnxp
n
.

Since u is invertible, the sequence (p, u1u
1−p, . . . , u1−pn−1

, u1−pn , 0, 0, . . .) is regular, so (En)∗ is
Landweber exact and it defines a ring spectrum En.

Using u, we can shift F to degree zero,

FEn(x, y) := u−1F (ux, uy).
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Definition 1. The spectrum En is called Morava E-theory. It is a complex oriented 2 periodic ring
spectrum. Its formal group law is p-typical, defined by

(En)∗ = W (Fpn)[[u1, . . . , un−1]][u±1]

[p]FEn (x) = px+FEn
u1x

p +FEn
. . .+FEn

un−1x
pn−1

+FEn
xp

n
.

The ring (En)∗ is a complete local ring with maximal ideal (p, u1, . . . , un−1) and residue field Fpn

Recall that

K(n)∗ = Fp[v±1
n ]

[p]FK(n)
(x) = vnx

pn .

Let (Kn)∗ = Fpn [u±1] with |u| = −2 and define an extension

K(n)∗ ↪→ (Kn)∗

by sending

vn 7→ u1−pn .

This is a faithfully flat extension. Hence there is a homology theory

(Kn)∗X = K(n)∗(X)⊗K(n)∗ (Kn)∗.

These theories have weakly equivalent localization functors, hence the same local categories. So we
can work with Kn instead of K(n). The spectrum Kn is has the advantage of being 2-periodic. We
can use u to shift the formal group law to degree zero,

u−1FKn(ux, uy).

This gives the non-graded Honda formal group law Γn over Fpn . It is p-typical, defined by

[p]Γn(x) = xp
n
.

Let

π : (En)0 → Fpn ,
be the projection modulo the maximal ideal (p, u1, . . . , un−1). Then

π∗(FEn) = Γn.

So FEn is a lift of Γn over (En)0.
This suggest the relation between Gn and En. Morava E-theory En arises from the Honda formal

group law through Lubin-Tate deformation theory.

3. Morava E-theory and Deformations

Let k be a perfect field of characteristic p > 0. Let Γ be a height n formal group law over k.
Definition 2. Let B is a complete Noetherian local ring with maximal ideal m and projection
π : B → B/m. A deformation of Γ over B is a pair (G, i) which satisfies:

• G is a formal group law over B.
• i : k → π(B) = B/m is an isomorphism.
• i∗Γ = π∗G.

In other words, G is a lift of Γ to B.

A morphism between two deformations is defined as follows:
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Definition 3. ?-isomorphisms Given two deformations (G1, i1) and (G2, i2) over B, a morphism
can exist only if i1 = i2. Then a morphism is given by an isomorphism of formal group laws
f : G1 → G2, which reduces to the identity modulo m, i.e,

π∗(f) : i∗1(Γ) = π∗(G1)
id−→ π∗(G2) = i∗2(Γ).

The deformations of Γ over B form a category DefΓ(B) with

ob(DefΓ(B)) = {(G, i)}
hom(DefΓ(B)) = {?− isomorphisms}.

The category DefΓ(B) is a groupoid in the sense that all its morphisms are invertible. This construc-
tion defines a functor. Let Λ be the category of complete Noetherian local rings with continuous
ring homomorphisms. Then

DefΓ(−) : Λ→ Sets.

Definition 4. A universal deformation consists of:

• a complete local ring R(k,Γ) such that R(k,Γ)/m = k.
• a deformation (F (k,Γ), id) over R(k,Γ) such that the following diagram can be filled by a

unique F

R(k,Γ)

��

f // B

π

��
R(k,Γ)/m = k

i // B/m

so that

(G, i) '? (f∗F (k,Γ), i),

via a unique ?-isomorphism.

Theorem 1. Lubin-Tate Theorem Let DefΓ(B)i be the deformations of the form (G, i) for a
fixed i. There are isomorphisms

π0(DefΓ(B)i) ' mn−1

π1(DefΓ(B), (G, i)) ' {1}.

The functor π0(DefΓ(−)i) is representable in the sense that there exists a universal deformation
R(k,Γ) so that

Homc(R(k,Γ), B) ' π0(DefΓ(B)).

Remark 1. There is a non-canonical isomorphism

R(k,Γ) 'W (k)[[u1, . . . , un−1]]..

If Γ is p-typical, then one can choose F = F (k,Γ) with p-series

[p]F (x) = x+F u1x
p +F . . .+F un−1x

pn−1
+F x

pn .

For Γn over Fpn, this implies that (En)0 and FEn is a universal deformation of Γn, that is,

(En)0 = R(Fpn ,Γn).
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Proof. I outline the idea. The Witt vectors W (k) have the universal property that there is a lift
for any complete local ring B,

W (k)

��

// B

��
k // B/m

,

where the maps are continuous ring maps. So, R(k,Γ) must be a W (k) algebra. For k = Fpn , the
local ring B contains the Teichmüller lifts of the pn − 1 roots of unity. The ring B is p-complete,
hence is a Zp-algebra. That is all the structure that complete local rings over Fpn support. Hence

W (Fpn) ' Zp[ζ].

Suppose that Γ is p-typical. Then

[p]Γ(x) = axp
n

+ . . .

for some unit a ∈ k. Let −→a = (a1, . . . , an−1) ∈ mn−1. The p-typical formal group law over B
defined by

[p]F−→a (x) = px+F−→a a1x
p +F−→a . . .+F−→a an−1x

pn−1
+F−→a ax

pn .

Then F−→a is a deformation of Γ over B. What needs to be proven is that, up to a unique ?-
isomorphism, any deformation has this form. Then clearly

Homc(R(k,Γ), B) ' π0(DefΓ(B)i)

In other words, you need to prove is that up to ?-isomorphism, you just need to fill in the slots.
Although not difficult in itself, the proof is long and requires machinery. In particular, it uses
Lazard’s theorem on symmetric 2-cocycles. �

3.1. Landweber Exactness. Any degree zero formal group law over a ring R(k,Γ) can be given
a grading. Let u be such that |u| = −2. Then

E(k,Γ)∗ = R(k,Γ)[u±1]

is a graded ring and the formal group law

F (k,Γ)(x, y) = u−1F (k,Γ)(ux, uy),

is a degree −2 formal group law over E(k,Γ)∗. Hence it is classified by a map

F : MU∗ → R(k,Γ)[u±1].

One can show that the functor

X →MU∗(X)⊗MU∗ R(k,Γ)[u±1].

is Landweber exact so that

(1) There is a complex oriented 2-periodic ring spectrum E(k,Γ) such that π0(E(k,Γ)) =
R(k,Γ).

(2) The degree zero formal group law associated to E(k,Γ) is F (k,Γ).

In this way, we recover

En = E(Fpn ,Γn).
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4. The Action of the Morava Stabilizer group Gn on En

Let g ∈ Aut(Γ),
g : Γ→ Γ.

The element g is a power series g(x) with coefficients in k. Choose any lift g̃(x) of g(x) to R(k,Γ).
Define a new formal group law by

F̃ (x, y) = g̃−1F (k,Γ)(g̃(x), g̃(y)).

Then (F̃ , i) is a deformation of Γ over R(k,Γ). This implies that there exists a unique ring isomor-
phism

g : R(k,Γ)→ R(k,Γ)

such that
g∗F (k,Γ) ' F̃ .

This defines an action of Aut(Γ) on the representing object R(k,Γ).
The Galois group Gal(k/Fp) also acts on DefΓ(B). Let σ be the Fröbenius. The σ acts by

(G, i) 7→ (G, i ◦ σ).

If Γ is fixed by Gal(k/Fp), then the induced action on R(k,Γ) is just the action of the Galois group
on W (k). Hence we get a semi-direct product

Aut(k,Γ) ' Aut(Γ) o Gal(k/Fp).
There is a canonical way to extend the action of Aut(k,Γ) to u ∈ E(k,Γ)−2 so that g can be realized
through homotopy commutative maps of ring spectra.

Suppose that g : E → E is a stable ring operation on E. Evaluating g on a point gives a ring
isomorphism

g∗ : E∗ → E∗.

Let x ∈ Ẽ0(CP∞) be an orientation which restricts to u−1 under the restriction map

Ẽ0(CP∞)→ Ẽ0(CP 1) ' Ẽ0(S2) = E2.

The map
g∗ : E∗(CP∞)→ E∗(CP∞)

sends x to a power f(x) ∈ E0[[x]] such that f ′(0) is a unit. By naturality, f gives an isomorphism
of formal group laws

f : FE → φ∗FE .

Because g∗(x) = f(x), the restriction of g∗ to E2 is given by

g∗(x+ I2) = f(x) + I2 = f ′(0)x+ I2,

so that,

g∗(u−1) = f ′(0)u−1.(1)

5. The K(n)-local theory (En)∗X

Now recall that

Sn = Aut(Γn),

and

Gn = Sn o Gal(Fpn/Fp).
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Then we have constructed an action of Gn on (En)∗.
Remark 2. This action can be computed! Maybe not on the nose, but it can be approximated.

Let Kn be the K(n)-local category. The functor

X → BP∗(X)⊗BP∗ (En)∗ = π∗(En ∧X)

does not preserve localizations, hence is not defined on Kn. The category Kn has internal smash
products and arbitrary wedges defined as follows. For X and Y in Kn, let

X ∧Kn Y = LK(n)(X ∧Y )∨
Kn

Xα = LK(n)

(∨
Xα

)
.

We want (En)∗ to preserve this structure.

Definition 5. Let X be a spectrum, then

(En)∗X := π∗LK(n)(En ∧X).

This is not a homology theory, for example, it does not send arbitrary wedges to sums of abelian
groups. But it has good properties which we explore here (in particular, it’s computable!). First
note that En is K(n)-local. So if X is finite, En ∧X is K(n)-local and

(En)∗(X) = π∗(En ∧X).

In some good cases, (En)∗X is a completion of π∗(En ∧X) with respect to

m = (p, u1, . . . , un−1).

Theorem 2. If K(n)∗X is concentrated in even degrees, then

(En)∗X ' π∗(En ∧X)∧m.

Further, (En)∗X is the completion of a free (En)∗-module,

((En)∗X '
⊕
α

Σkα(En)∗)
∧
m.

Now recall that there is an action of Gn on (En)∗. It can be obtained from a homotopy commu-

tative maps of ring spectra En
g−→ En. So they commute up to homotopy with the multiplication

on En, i.e.,

En ∧En

��

g ∧ g // En ∧En

��
En

g // En

.

This gives an action of Gn on x ∈ (En)∗X via

S
x // En ∧X

g ∧ 1 // En ∧X .(2)

In particular, if a ∈ (En)∗ and x ∈ (En)∗X, then there is a commutative diagram

S // S ∧S a∧x // En ∧En ∧X
g ∧ g ∧ 1

��

m∧ 1 // En ∧X
g ∧ 1

��
En ∧En ∧X

m∧ 1 // En ∧X
6



which implies that the action of Gn is compatible with the (En)∗-module structure,

g(ax) = g(a)g(x).

Definition 6. A Morava module M is a complete (En)∗-module with a continuous Gn action such
that, for x ∈M , g ∈ Gn and a ∈ (En)∗

g(ax) = g(a)g(x).

Example 1. Let X be such that K(n)∗X is concentrated in even degrees, then (En)∗X is complete
hence it is a Morava module.

Example 2. The module (En)∗En is a Morava module. Indeed

K(n)∗En = (En)∗(K(n)) = BP∗(K(n))⊗BP∗ (En)∗.

The Atiyah-Hirzebruch spectral sequence collapses for K(n)∗, hence BP∗(K(n)) is in even degrees
and so is (En)∗. The groups Gn acts on the left factor of

(En)∗En = π∗LK(n)(En ∧En).

The next goal is to identify (En)∗En. I will unpack the following theorem:

Theorem 3. Let K(n)∗X be concentrated in even degrees, then there is an isomorphism of Morava
modules

(En)∗(En ∧X) ' Homc(Gn, (En)∗X).(3)

In particular,

(En)∗En ' Homc(Gn, (En)∗).

To make sense of this theorem, I need

(i) a Morava module structure on Homc(Gn, (En)∗X).
(ii) a map from (En)∗(En ∧X) to Homc(Gn, (En)∗X) compatible with this structure.

For such X,

Homc(Gn, (En)∗X),

denotes the continuous maps from Gn to (En)∗X, where (En)∗X has the topology induced by m.
This is complete with respect to the ideal m. Further, it has a natural (En)∗-module structure: if

φ : Gn → (En)∗X,

is an element of Homc(Gn, (En)∗X), and a ∈ (En)∗, then, for h ∈ Gn, let

(aφ)(h) = aφ(h).

So Homc(Gn, (En)∗X) is a complete (En)∗-module. There are many choices for the action of Gn

on Homc(Gn, (En)∗X). I will choose that of [1]. For φ : Gn → (En)∗, let

(gφ)(h) = φ(g−1h).

Now we can construct the map. I do it (En)∗En but the same construction works if we smash it

with X
1−→ X. Given x ∈ (En)∗En, define the map

φx : Gn → (En)∗,

by setting φx(h) to be the K(n)-localization of the composite

S0 x // En ∧En
h−1 ∧ 1// En ∧En // En .
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For this to be compatible with the Morava module structure on (En)∗En, we must have

(gφx) = φgx.(4)

The following diagram gives the map φgx:

S0 x // En ∧En
g ∧ 1 // En ∧En

h−1 ∧ 1// En ∧En
m // En ,

and indeed
φgx(h) = φx(g−1h) = (gφx)(h),

and the map (3) is an isomorphism of Morava modules. The map

ηL : (En)∗ → Homc(Gn, (En)∗)

defined by
x 7→ ηL(x)(g) = g−1x,

is the left unit. The right unit

ηR : (En)∗ → Homc(Gn, (En)∗),

is given by
x 7→ ηR(x)(g) = x.

Theorem 4. There is an isomorphism of Hopf algebroids over Zp,
((En)∗X, (En)∗(En)) ' ((En)∗X,Homc(Gn, (En)∗)).

Remark 3. A different choice of Gn-action on Homc(Gn, (En)∗) with a compatible isomorphism
(3) gives a constant left unit, which is more natural. See [2].

Dylan is going to show us how the Adam’s novikov spectral sequence arises from a simplicial
resolution

X // E ∧X // // E ∧E ∧Xoo
////// . . .oooo

If you take the K(n)-local version of this resolution and consider the isomorphism (3) you’ll notice
that it’s computing the group cohomology of Gn with coefficients in (En)∗X.

Theorem 5. The K(n)-local En-Adams Novikov spectral sequence has E2-page given by

Hs(Gn, (En)tX) =⇒ πt−sLK(n)X.

This is commonly called the homotopy fixed point spectral sequence.

The machinery used to prove Theorem (4) is used to show the following fundamental theorem:

Theorem 6. Morava’s Change of Rings Theorem Let In = (p, v1, . . . , vn−1). If BP∗X is
In-torsion, then there is an isomorphism

ExtBP∗BP (BP∗, v
−1
n BP∗X) ' H∗(Gn, (En)∗X).
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